Adding these equations and using that $u_{x x}+u_{y y}=0, v_{x x}+v_{y y}=0$, and that $u_{x} v_{x}+$ $u_{y} v_{y}=0$ (which is a consequence of the Cauchy-Riemann identity (2.5.7) in Theorem 2.5.1), we deduce that

$$
\begin{aligned}
(w \circ f)_{x x}+(w \circ f)_{y y} & =w_{u u}\left(u_{x}\right)^{2}+w_{u u}\left(u_{y}\right)^{2}+w_{v v}\left(v_{x}\right)^{2}+w_{v v}\left(v_{y}\right)^{2} \\
& =w_{u u}\left(u_{x}\right)^{2}+w_{u u}\left(v_{x}\right)^{2}+w_{v v}\left(v_{x}\right)^{2}+w_{v v}\left(u_{x}\right)^{2} \\
& =\left(w_{u u}+w_{v v}\right)\left(\left(u_{x}\right)^{2}+\left(v_{x}\right)^{2}\right)
\end{aligned}
$$

and so (6.1.3) follows. If w is harmonic, then $\Delta w=0$ and it follows from (6.1.3) that $\Delta(w \circ f)=0$, and thus $w \circ f$ is harmonic if w is harmonic.

Harmonic Conjugates

Definition 6.1.11. Suppose that u and v are harmonic functions that satisfy the Cauchy-Riemann equations on some open set Ω, in other words, the function $f=u+i v$ is analytic in Ω. Then v is called the harmonic conjugate of u.

Can we always find a harmonic conjugate of a harmonic function u ? As it turns out, the answer depends on the function u and its domain of definition. For example, the function $\ln |z|$ is harmonic in $\Omega=\mathbb{C} \backslash\{0\}$ (Example 6.1.3(d)); but $\ln |z|$ has no harmonic conjugate in that region (Exercise 34). It does, however, have a harmonic conjugate in $\mathbb{C} \backslash(-\infty, 0]$, namely $\operatorname{Arg} z$. Our next example shows one way of using the Cauchy-Riemann equations to find the harmonic conjugate in a region such as the entire complex plane, a disk, or a rectangle.

Example 6.1.12. (Finding harmonic conjugates) Show that $u(x, y)=x^{2}-y^{2}+x$ is harmonic in the entire plane and find a harmonic conjugate for it.
Solution. That u is harmonic follows from $u_{x x}=2$ and $u_{y y}=-2$. To find a harmonic conjugate v, we use the Cauchy-Riemann equations as follows. We want $u+i v$ to be analytic. Hence v must satisfy the Cauchy-Riemann equations

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{6.1.4}
\end{equation*}
$$

Since $\frac{\partial u}{\partial x}=2 x+1$, the first equation implies that

$$
2 x+1=\frac{\partial v}{\partial y}
$$

To get v we integrate both sides of this equation with respect to y. However, since v is a function of x and y, the constant of integration may be a function of x. Thus integrating with respect to y yields

$$
v(x, y)=(2 x+1) y+c(x)
$$

