and (5.7.15) follows from the formula for the Taylor coefficients.
33. Let a be an arbitrary complex number. Consider the equation $z=a+w e^{z}$. Show that a solution of this equation is

$$
z=a+\sum_{n=1}^{\infty} \frac{n^{n-1} e^{n a}}{n!} w^{n}
$$

when $|w|<e^{-1-\operatorname{Re} a}$. [Hint: Let $z_{0}=a, w=(z-a) e^{-z}, \phi(z)=\frac{z-a}{(z-a) e^{-z}}=e^{z}$, and apply Lagrange's inversion formula (5.7.15).]
34. Lambert's w-function. This function has been applied in quantum physics, fluid mechanics, biochemistry, and combinatorics. It is named after the German mathematician Johann Heinrich Lambert (1728-1777). The Lambert function or Lambert w-function is defined as the inverse function of $f(z)=z e^{z}$. Using the technique of Exercise 32, based on Lagrange's formula, show that the solution of $w=z e^{z}$ is

$$
z=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^{n-2}}{(n-1)!} w^{n} \quad \text { whenever }|w|<\frac{1}{e}
$$

35. Project Problem: Landau's estimate. In this exercise we present Landau's solution of the following problem: Given an analytic function f in a neighborhood of a closed disk $\overline{B_{R}\left(z_{0}\right)}$ with $f^{\prime}\left(z_{0}\right) \neq 0$, find $r>0$ such that f is one-to-one on the open disk $B_{r}\left(z_{0}\right)$. Landau's solution: It suffices to take $r=R^{2}\left|f^{\prime}\left(z_{0}\right)\right| /(4 M)$, where M is the maximum value of $|f|$ on $C_{R}\left(z_{0}\right)$.

Fill in the details in the following argument. It suffices to choose r so that $f^{\prime}(z) \neq 0$ for all z in $B_{r}\left(z_{0}\right)$ (why?). Without loss of generality we can take $z_{0}=0$ and $w_{0}=f\left(z_{0}\right)=0$ (why?). Then for $|z|<R, f(z)=a_{1} z+a_{2} z^{2}+\cdots$. Write $r=\lambda R$, where $0<\lambda<1$ is to be determined so that $f^{\prime}(z) \neq 0$ for all z in $B_{\lambda R}(0)$. For z_{1} and z_{2} in $B_{\lambda R}(0)$, we have
$\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}\right|=\left|a_{1}+\sum_{n=2}^{\infty} a_{n}\left(z_{1}^{n-1}+z_{1}^{n-2} z_{2}+\cdots+z_{1} z_{2}^{n-2}+z_{2}^{n-1}\right)\right| \geq\left|a_{1}\right|-\sum_{n=2}^{\infty} n\left|a_{n}\right| \lambda^{n-1} R^{n-1}$.
If we could choose a number λ such that

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \lambda^{n-1} R^{n-1}<\left|a_{1}\right|, \tag{5.7.16}
\end{equation*}
$$

this would make the absolute value of the difference quotient for the derivative positive, independently of z_{1} and z_{2} in $B_{\lambda R}(0)$, and this would in turn imply that $f^{\prime}(z) \neq 0$ for all z in $B_{\lambda R}(0)$ and complete the proof. So let us show that we can choose λ so that (5.7.16) holds. Let $M=\max _{|z|=R}|f(z)|$. Cauchy's estimate yields $\left|a_{n}\right| \leq \frac{M}{R^{n}}$. Then

$$
\sum_{n=2}^{\infty} n\left|a_{n}\right| \lambda^{n-1} R^{n-1} \leq \frac{M}{R} \sum_{n=2}^{\infty} n \lambda^{n-1}=\frac{M}{R} \frac{\lambda(2-\lambda)}{(1-\lambda)^{2}}<\frac{M}{R} \frac{2 \lambda}{(1-\lambda)^{2}}
$$

(Use $\sum_{n=2}^{\infty} n \lambda^{n-1}=\frac{d}{d \lambda}\left(\lambda^{2}+\lambda^{3}+\cdots\right)=\frac{d}{d \lambda} \frac{\lambda^{2}}{1-\lambda}=\frac{2 \lambda-\lambda^{2}}{(1-\lambda)^{2}}$.) Consider the choice $\lambda=\frac{R\left|a_{1}\right|}{4 M}$. This yields $\lambda \leq \frac{1}{4}$ and $\sum_{n=2}^{\infty} n\left|a_{n}\right| \lambda^{n-1} R^{n-1}<\frac{\left|a_{1}\right|}{4 \lambda} \frac{2 \lambda}{(1-\lambda)^{2}}=\frac{\left|a_{1}\right|}{2} \frac{1}{(1-\lambda)^{2}} \leq \frac{8}{9}\left|a_{1}\right|$. (The maximum of $1 /(1-\lambda)^{2}$ on the interval $[0,1 / 4]$ occurs at $\lambda=1 / 4$ and is equal to $\frac{16}{9}$.) Hence (5.7.16) holds for this choice of λ, and for this choice, we get $r=\lambda R=\frac{R^{2}\left|a_{1}\right|}{4 M}$, which is what Landau's estimate says.

