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21. Summing roots of unity. We use the variant of the counting theorem to show that for n ≥ 2,
the sum of the n nth roots of unity is 0 (see Exercise 63, Section 1.3). Let S denote this sum.
(a) Using Theorem 5.7.6, explain why
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where R > 1. [Hint: To prove the second equality make a suitable change of variables.]
(b) Evaluate the second integral in part (a) using Cauchy’s generalized integral formula and con-
clude that S = 0.

22. Examples concerning Lemma 5.7.1. Give an example of a function f with an essential sin-
gularity at 0 such that f ′

f has
(a) an essential singularity at 0;
(b) a pole of order m≥ 2 at 0.
[Hint: Use suitable compositions of the function e1/z in your examples.]

23. Minimum modulus principle. Show that for a nonzero nonconstant analytic function f on a
region Ω , | f | does not attain a minimum in Ω . [Hint: Use that the function f is open.]

24. Meromorphic Rouché’s theorem. Suppose that C is a simple closed path, Ω is the region
inside C, and f and g are meromorphic inside and on C, having no zeros or poles on C. Show that
if |g(z)|< | f (z)| for all z on C, then N( f +g)−P( f +g) = N( f )−P( f ). [Hint: Repeat the proof
of Rouché’s theorem. What can you say about the values of φ in the present case?]

25. Complete the argument that provides a geometric proof of Theorem 5.7.9 (Rouché’s theorem).
(i) Show that for each z ∈C, we can find a branch of the argument where

arg f (z)− π

2
< arg( f (z)+g(z))< arg f (z)+

π

2
.

(ii) Using connectedness, we can show that this inequality holds for the specific argument function
arg f used to define ∆C arg f , see page 353. Show that

∆C arg f −π < ∆C arg( f +g)< ∆C arg f +π,

and use the fact that ∆C arg( f + g) must be an integer multiple of 2π to prove that ∆C arg f =
∆C arg( f +g) on C.

26. Project Problem: Hurwitz’s theorem. We outline a proof of a useful theorem due to the
German mathematician Adolf Hurwitz (1859–1919). The theorem states the following: Suppose
that { fn}∞

n=1 is a sequence of analytic functions on a region Ω converging uniformly on every
closed and bounded subset of Ω to a function f . Then either
(i) f is identically 0 on Ω ; or
(ii) if Br(z0) is an open disk in Ω such that f does not vanish on Cr(z0), then fn and f have the
same number of zeros in Br(z0) for all sufficiently large n. In particular, if f is not identically 0
and f has p distinct zeros in Ω , then so do the functions fn for all sufficiently large n.

Observe that f is analytic by Theorem 4.1.10. Also, note that the theorem guarantees that, for
large n, fn and f have the same number of zeros, but these zeros are not necessarily the same for fn
and f . To see this, take fn(z) = z− 1

n and f (z) = z for all z∈Ω . Finally, observe that the possibility
that f is identically zero can arise, even if the fn’s are all nonzero. Simply take fn =

1
n .

Fill in the details in the following proof. Suppose that f is not identically 0 in Ω . Let Br(z0) be
a closed disk such that f is nonvanishing on Cr(z0). Let m = min | f | on Cr(z0). Then m > 0 (why?).
Apply uniform convergence to get an index N such that n > N implies that | fn− f | < m ≤ | f | on
Cr(z0). Complete the proof by applying Rouché’s theorem.




