5.7 The Counting Theorem and Rouché's Theorem

19.
$$\int_{C_2(0)} \frac{ze^{iz}}{z^2 + 1} dz$$
 20.
$$\int_{C_1(0)} \frac{z^3 e^{z^2}}{e^{z^2} - 1} dz$$

21. Summing roots of unity. We use the variant of the counting theorem to show that for $n \ge 2$, the sum of the *n* nth roots of unity is 0 (see Exercise 63, Section 1.3). Let *S* denote this sum. (a) Using Theorem 5.7.6, explain why

$$S = \frac{1}{2\pi i} \int_{C_R(0)} z \frac{nz^{n-1}}{z^n - 1} dz = \frac{n}{2\pi i} \int_{C_{1/R}(0)} \frac{1}{1 - z^n} \frac{dz}{z^2},$$

where R > 1. [Hint: To prove the second equality make a suitable change of variables.] (b) Evaluate the second integral in part (a) using Cauchy's generalized integral formula and conclude that S = 0.

22. Examples concerning Lemma 5.7.1. Give an example of a function f with an essential singularity at 0 such that $\frac{f'}{f}$ has

(a) an essential singularity at 0;

(b) a pole of order $m \ge 2$ at 0.

[Hint: Use suitable compositions of the function $e^{1/z}$ in your examples.]

23. Minimum modulus principle. Show that for a nonzero nonconstant analytic function f on a region Ω , |f| does not attain a minimum in Ω . [Hint: Use that the function f is open.]

24. Meromorphic Rouché's theorem. Suppose that *C* is a simple closed path, Ω is the region inside *C*, and *f* and *g* are meromorphic inside and on *C*, having no zeros or poles on *C*. Show that if |g(z)| < |f(z)| for all *z* on *C*, then N(f+g) - P(f+g) = N(f) - P(f). [Hint: Repeat the proof of Rouché's theorem. What can you say about the values of ϕ in the present case?]

25. Complete the argument that provides a geometric proof of Theorem 5.7.9 (Rouché's theorem). (i) Show that for each $z \in C$, we can find a branch of the argument where

$$\arg f(z) - \frac{\pi}{2} < \arg \left(f(z) + g(z) \right) < \arg f(z) + \frac{\pi}{2}.$$

(ii) Using connectedness, we can show that this inequality holds for the specific argument function arg f used to define $\Delta_C \arg f$, see page 353. Show that

$$\Delta_C \arg f - \pi < \Delta_C \arg (f + g) < \Delta_C \arg f + \pi,$$

and use the fact that $\Delta_C \arg(f+g)$ must be an integer multiple of 2π to prove that $\Delta_C \arg f = \Delta_C \arg(f+g)$ on C.

26. Project Problem: Hurwitz's theorem. We outline a proof of a useful theorem due to the German mathematician Adolf Hurwitz (1859–1919). The theorem states the following: Suppose that $\{f_n\}_{n=1}^{\infty}$ is a sequence of analytic functions on a region Ω converging uniformly on every closed and bounded subset of Ω to a function *f*. Then either

(i) f is identically 0 on Ω ; or

(ii) if $B_r(z_0)$ is an open disk in Ω such that f does not vanish on $C_r(z_0)$, then f_n and f have the same number of zeros in $B_r(z_0)$ for all sufficiently large n. In particular, if f is not identically 0 and f has p distinct zeros in Ω , then so do the functions f_n for all sufficiently large n.

Observe that *f* is analytic by Theorem 4.1.10. Also, note that the theorem guarantees that, for large *n*, f_n and *f* have the same number of zeros, but these zeros are not necessarily the same for f_n and *f*. To see this, take $f_n(z) = z - \frac{1}{n}$ and f(z) = z for all $z \in \Omega$. Finally, observe that the possibility that *f* is identically zero can arise, even if the f_n 's are all nonzero. Simply take $f_n = \frac{1}{n}$.

Fill in the details in the following proof. Suppose that f is not identically 0 in Ω . Let $\overline{B_r(z_0)}$ be a closed disk such that f is nonvanishing on $C_r(z_0)$. Let $m = \min |f|$ on $C_r(z_0)$. Then m > 0 (why?). Apply uniform convergence to get an index N such that n > N implies that $|f_n - f| < m \le |f|$ on $C_r(z_0)$. Complete the proof by applying Rouché's theorem.

363