we have the following result, which should be compared to Theorem 2.3.12. Theorem 5.7.17 can be used to derive a useful formula due to Lagrange for the inversion of power series. See Exercise 32.

A function f that is analytic and one-to-one is called a **univalent** function. The next corollary says that univalent functions have global inverses.

Corollary 5.7.18. (A Global Inverse Function) Suppose that f is univalent function on a region Ω . Then its inverse function f^{-1} exists and is analytic on the region $f[\Omega]$. Moreover,

$$\frac{d}{dw}f^{-1}(w) = \frac{1}{f'(z)}, \quad where \ w = f(z).$$
(5.7.13)

Proof. By Theorem 5.7.17, f^{-1} is analytic in a neighborhood of each point in Ω , and hence it is analytic on Ω . Also, since f is one-to-one, Theorem 5.7.13 implies that $f'(z) \neq 0$ for all z in Ω . Differentiating both sides of the identity $z = f^{-1}(f(z))$, we obtain $1 = \frac{d}{dw} f^{-1}(w) f'(z)$, which is equivalent to (5.7.13).

Exercises 5.7

In Exercises 1–6, use the method of Example 5.7.5 to find the number of zeros in the first quadrant of the following polynomials.

1. $z^2 + 2z + 2$ 2. $z^2 - 2z + 2$ 3. $z^3 - 2z + 4$ 4. $z^3 + 5z^2 + 8z + 6$ 5. $z^4 + 8z^2 + 16z + 20$ 6. $z^5 + z^4 + 13z^3 + 10$

In Exercises 7–14, use Rouché's theorem to determine the number of zeros of the functions in the indicated region.

7. $z^3 + 3z + 1$, |z| < 1

9. $7z^3 + 3z^2 + 11$, |z| < 1

11. $4z^6 + 41z^4 + 46z^2 + 9$, 2 < |z| < 4.

13. $e^z - 3z$, |z| < 1

15. Show that the equation

 $3 - z + 2e^{-z} = 0$

has exactly one root in the right half-plane Re z > 0. [Hint: Use Rouché's theorem and contours such as the one in the adjacent figure.]

8. $z^4 + 4z^3 + 2z^2 - 7$, |z| < 2

10. $7z^3 + z^2 + 11z + 1$, 1 < |z|

14. $e^{z^2} - 4z^2$, |z| < 1

12. $z^4 + 50z^2 + 49$, 3 < |z| < 4

16. Suppose that $\operatorname{Re} w > 0$ and let *a* be a complex number. Show that $w - z + ae^{-z} = 0$ has exactly one root in the right half-plane $\operatorname{Re} z > 0$.

In Exercises 17–20, evaluate the path integrals. As usual, $C_R(z_0)$ stands for the positively oriented circle with radius R > 0 centered at z_0 .

17.
$$\int_{C_1(0)} \frac{dz}{z^5 + 3z + 5}$$
18.
$$\int_{C_1(0)} \frac{e^z - 12z^3}{e^z - 3z^4} dz$$