we have the following result, which should be compared to Theorem 2.3.12. Theorem 5.7.17 can be used to derive a useful formula due to Lagrange for the inversion of power series. See Exercise 32.

A function f that is analytic and one-to-one is called a univalent function. The next corollary says that univalent functions have global inverses.

Corollary 5.7.18. (A Global Inverse Function) Suppose that f is univalent function on a region Ω. Then its inverse function f^{-1} exists and is analytic on the region $f[\Omega]$. Moreover,

$$
\begin{equation*}
\frac{d}{d w} f^{-1}(w)=\frac{1}{f^{\prime}(z)}, \quad \text { where } w=f(z) \tag{5.7.13}
\end{equation*}
$$

Proof. By Theorem 5.7.17, f^{-1} is analytic in a neighborhood of each point in Ω, and hence it is analytic on Ω. Also, since f is one-to-one, Theorem 5.7.13 implies that $f^{\prime}(z) \neq 0$ for all z in Ω. Differentiating both sides of the identity $z=f^{-1}(f(z))$, we obtain $1=\frac{d}{d w} f^{-1}(w) f^{\prime}(z)$, which is equivalent to (5.7.13).

Exercises 5.7

In Exercises 1-6, use the method of Example 5.7.5 to find the number of zeros in the first quadrant of the following polynomials.

1. $z^{2}+2 z+2$
2. $z^{2}-2 z+2$
3. $z^{3}-2 z+4$
4. $z^{3}+5 z^{2}+8 z+6$
5. $z^{4}+8 z^{2}+16 z+20$
6. $z^{5}+z^{4}+13 z^{3}+10$

In Exercises 7-14, use Rouché's theorem to determine the number of zeros of the functions in the indicated region.
7. $z^{3}+3 z+1, \quad|z|<1$
8. $z^{4}+4 z^{3}+2 z^{2}-7, \quad|z|<2$
9. $7 z^{3}+3 z^{2}+11, \quad|z|<1$
10. $7 z^{3}+z^{2}+11 z+1, \quad 1<|z|$
11. $4 z^{6}+41 z^{4}+46 z^{2}+9, \quad 2<|z|<4$.
12. $z^{4}+50 z^{2}+49, \quad 3<|z|<4$
13. $e^{z}-3 z, \quad|z|<1$
14. $e^{z^{2}}-4 z^{2}, \quad|z|<1$
15. Show that the equation

$$
3-z+2 e^{-z}=0
$$

has exactly one root in the right half-plane $\operatorname{Re} z>0$. [Hint: Use Rouché's theorem and contours such as the one in the adjacent figure.]

16. Suppose that Rew>0 and let a be a complex number. Show that $w-z+a e^{-z}=0$ has exactly one root in the right half-plane $\operatorname{Re} z>0$.
In Exercises 17-20, evaluate the path integrals. As usual, $C_{R}\left(z_{0}\right)$ stands for the positively oriented circle with radius $R>0$ centered at z_{0}.
17. $\int_{C_{1}(0)} \frac{d z}{z^{5}+3 z+5}$
18. $\int_{C_{1}(0)} \frac{e^{z}-12 z^{3}}{e^{z}-3 z^{4}} d z$

