$f^{-1}[U]$ and $f^{-1}[V]$ are open (note that since f is defined on Ω , when taking a preimage, we only consider those points in Ω). Clearly, $f^{-1}[U]$ and $f^{-1}[V]$ are disjoint and their union is Ω . Since Ω is connected, either $\Omega = f^{-1}[U]$ or $\Omega = f^{-1}[V]$, and hence $f[\Omega] = U$ or $f[\Omega] = V$, implying that $f[\Omega]$ is connected.

Another interesting application of the open mapping property of analytic functions is a simple proof of the maximum principle.

Corollary 5.7.16. (Maximum Modulus Principle) If f is analytic on a region Ω , such that |f| attains a maximum at some point in Ω , then f is constant in Ω .

Proof. Suppose *f* is nonconstant. Let z_0 be an arbitrary point in Ω ; we will show that $|f(z_0)|$ is not a maximum. By Corollary 5.7.14, *f* is open. Then for a small open disk $B_{\varepsilon}(z_0)$ the set $f[B_{\varepsilon}(z_0)]$ is open and thus it contains an open disk $B_{\rho}(w_0)$ of $w_0 = f(z_0)$. Clearly there exists *w* in $B_{\rho}(w_0)$ such that $|w| > |w_0|$. See Figure 5.63. Then w = f(z) for some $z \in B_{\varepsilon}(z_0)$ and $|f(z)| > |f(z_0)|$. Consequently $f(z_0)$ does not have the largest modulus among all the points in $B_{\rho}(w_0)$ and thus $|f(z_0)|$ cannot be a maximum of |f|.

Fig. 5.63 $B_{\rho}(w_0) \subset f[\Omega]$.

We next use the variant of the counting theorem to give a formula for the inverse function of f in terms of an integral involving f.

Theorem 5.7.17. (Inverse Function Formula) Suppose that f is analytic in a neighborhood of a point z_0 and $f'(z_0) \neq 0$. Let $w_0 = f(z_0)$. Then there are $R, \rho > 0$ such that $f^{-1}[B_{\rho}(w_0)] \subset B_R(z_0)$, f is one to one on $f^{-1}[B_{\rho}(w_0)]$, and has an inverse function $g : B_{\rho}(w_0) \rightarrow f^{-1}[B_{\rho}(w_0)]$ which is is analytic on $B_{\rho}(w_0)$ and satisfies

$$g(w) = \frac{1}{2\pi i} \int_{C_R(z_0)} z \frac{f'(z)}{f(z) - w} dz, \qquad w \in B_\rho(w_0).$$
(5.7.12)

Proof. Let *R* and ρ be as in Theorem 5.7.12. For *w* in $B_{\rho}(w_0)$, the function f - w has exactly one zero in $B_R(z_0)$, which we call g(w). Applying identity (5.7.7) (with $n_1 = 1, z_1 = g(w), m(z_1) = 1, n_2 = 0$) we see that identity (5.7.12) holds. **DELETE BLUE TEXT:** Then *g* is continuous on $B_{\rho}(w_0)$, as for $w \to w_1$ we can pass the limit inside the integral in (5.7.12) to obtain $g(w) \to g(w_1)$. Applying Theorem 2.3.12 [with $h = f \circ g$ being the identity map on $B_{\rho}(w_0)$] we obtain that *g* is analytic on $B_{\rho}(w_0)$. The analyticity of the function *g* is a consequence of Theorem 3.8.5.

Theorem 5.7.17 can be viewed as a statement about the local existence of inverse functions. If f is one-to-one on a region Ω , there is no ambiguity in defining the inverse function f^{-1} on the whole region $f[\Omega]$. Indeed, for w in $f[\Omega]$, we define $f^{-1}(w)$ to be the unique z in Ω with f(z) = w. For f analytic and one-to-one,