Proof. For *z* on *C*, the inequality |g(z)| < |f(z)| implies that $f(z) \neq 0$, and so |g|/|f| is continuous and strictly less than 1 on *C*. Since *C* is a closed and bounded set, |g|/|f| attains its maximum $\delta < 1$ on *C*. Pick $\delta < \delta_1 < 1$. For *z* on *C* and $0 < |\lambda| \le 1/\delta_1$, if $f(z) + \lambda g(z) = 0$, then $|g(z)|/|f(z)| = 1/|\lambda| \ge \delta_1$, which contradicts that $|g|/|f| \le \delta$ on *C*. So $f(z) + \lambda g(z)$ is not equal to zero for all *z* on *C* and $|\lambda| \le 1/\delta_1$. We claim that the function

$$\phi(\lambda) = \frac{1}{2\pi i} \int_C \frac{f'(z) + \lambda g'(z)}{f(z) + \lambda g(z)} dz$$
(5.7.8)

is continuous in λ on $[-1/\delta_1, 1/\delta_1]$. To verify this, notice that the integrand $G(\lambda, z)$ in (5.7.8) is continuous and thus uniformly continuous on $[0, 1/\delta_1] \times C$. Consequently, $G(\lambda, z)$ is close to $G(\lambda', z)$ uniformly in z and thus the integral of $G(\lambda, z)$ in z is close to that of $G(\lambda', z)$ in z. By Theorem 5.7.2, $\phi(\lambda) = N(f + \lambda g)$, and so ϕ is integer-valued. By Lemma 5.7.8, ϕ is constant for all $|\lambda| < 1/\delta_1$. In particular, $\phi(0) = N(f) = \phi(1) = N(f + g)$.

We can give a geometric interpretation of Rouché's theorem, based on the argument principle. According to (5.7.6), we are merely claiming that

$$\Delta_C \arg(f+g) = \Delta_C \arg f. \qquad (5.7.9)$$

As z traces C, f(z) winds around the origin a specific number of times. Since |g(z)| < |f(z)|, the point f(z) + g(z) must lie in the disk of radius |f(z)| centered at f(z) (Figure 5.62), and so f(z) + g(z) must wind around the origin the same number of times as f(z) (see Exercise 25).

Fig. 5.62 Suppose that for each z on C there is a rope, shorter than the distance from f(z) to the origin, joining f(z) to f(z) + g(z). Then f(z) + g(z) goes around the origin the same number of times as f(z) goes around the origin, when z traces the curve C.

The following are typical applications of Rouché's theorem.

Example 5.7.10. (Counting zeros with Rouché's theorem)

(a) Show that all zeros of p(z) = z⁴ + 6z + 3 lie inside the circle |z| = 2.
(b) Show that if a is a real number with a > e, then in |z| < 1 the equation e^z = azⁿ has n roots (counting orders).

Solution. (a) Since *p* is a polynomial of degree 4, it is enough to show that N(p) = 4 inside the circle |z| = 2. Take $f(z) = z^4$ and g(z) = 6z + 3 and note that f(z) + g(z) = p(z). For |z| = 2, we have $|f(z)| = 2^4 = 32$ and $|g(z)| \le |6z| + 3 = 15$. Hence |g(z)| < |f(z)| for all *z* on the circle |z| = 2, and so by Rouché's theorem N(f) = N(f+g) = N(p). Clearly *f* has one zero with multiplicity 4 at z = 0. Thus N(f) = 4 and so N(p) = 4, as desired.