Proof. For z on C, the inequality $|g(z)|<|f(z)|$ implies that $f(z) \neq 0$, and so $|g| /|f|$ is continuous and strictly less than 1 on C. Since C is a closed and bounded set, $|g| /|f|$ attains its maximum $\delta<1$ on C. Pick $\delta<\delta_{1}<1$. For z on C and $0<|\lambda| \leq$ $1 / \delta_{1}$, if $f(z)+\lambda g(z)=0$, then $|g(z)| /|f(z)|=1 /|\lambda| \geq \delta_{1}$, which contradicts that $|g| /|f| \leq \delta$ on C. So $f(z)+\lambda g(z)$ is not equal to zero for all z on C and $|\lambda| \leq 1 / \delta_{1}$. We claim that the function

$$
\begin{equation*}
\phi(\lambda)=\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)+\lambda g^{\prime}(z)}{f(z)+\lambda g(z)} d z \tag{5.7.8}
\end{equation*}
$$

is continuous in λ on $\left[-1 / \delta_{1}, 1 / \delta_{1}\right]$. To verify this, notice that the integrand $G(\lambda, z)$ in (5.7.8) is continuous and thus uniformly continuous on $\left[0,1 / \delta_{1}\right] \times C$. Consequently, $G(\lambda, z)$ is close to $G\left(\lambda^{\prime}, z\right)$ uniformly in z and thus the integral of $G(\lambda, z)$ in z is close to that of $G\left(\lambda^{\prime}, z\right)$ in z. By Theorem 5.7.2, $\phi(\lambda)=N(f+\lambda g)$, and so ϕ is integer-valued. By Lemma 5.7.8, ϕ is constant for all $|\lambda|<1 / \delta_{1}$. In particular, $\phi(0)=N(f)=\phi(1)=N(f+g)$.

We can give a geometric interpretation of Rouché's theorem, based on the argument principle. According to (5.7.6), we are merely claiming that

$$
\begin{equation*}
\Delta_{C} \arg (f+g)=\Delta_{C} \arg f \tag{5.7.9}
\end{equation*}
$$

As z traces $C, f(z)$ winds around the origin a specific number of times. Since $|g(z)|<|f(z)|$, the point $f(z)+g(z)$ must lie in the disk of radius $|f(z)|$ centered at $f(z)$ (Figure 5.62), and so $f(z)+g(z)$ must wind around the origin the same number of times as $f(z)$ (see Exercise 25).

Fig. 5.62 Suppose that for each z on C there is a rope, shorter than the distance from $f(z)$ to the origin, joining $f(z)$ to $f(z)+g(z)$. Then $f(z)+g(z)$ goes around the origin the same number of times as $f(z)$ goes around the origin, when z traces the curve C.

The following are typical applications of Rouché's theorem.

Example 5.7.10. (Counting zeros with Rouché's theorem)

(a) Show that all zeros of $p(z)=z^{4}+6 z+3$ lie inside the circle $|z|=2$.
(b) Show that if a is a real number with $a>e$, then in $|z|<1$ the equation $e^{z}=a z^{n}$ has n roots (counting orders).
Solution. (a) Since p is a polynomial of degree 4, it is enough to show that $N(p)=4$ inside the circle $|z|=2$. Take $f(z)=z^{4}$ and $g(z)=6 z+3$ and note that $f(z)+g(z)=$ $p(z)$. For $|z|=2$, we have $|f(z)|=2^{4}=32$ and $|g(z)| \leq|6 z|+3=15$. Hence $|g(z)|<$ $|f(z)|$ for all z on the circle $|z|=2$, and so by Rouche's theorem $N(f)=N(f+g)=$ $N(p)$. Clearly f has one zero with multiplicity 4 at $z=0$. Thus $N(f)=4$ and so $N(p)=4$, as desired.

