$$
\operatorname{Res}\left(g\frac{f'}{f},p_j\right) = g(p_j)\operatorname{Res}\left(\frac{f'(z)}{f(z)},p_j\right) = -m(p_j)g(p_j).
$$

Now $(5.7.7)$ follows from the residue theorem.

Example 5.7.7. Evaluate

$$
\int_{C_1(0)} \frac{e^z \cos z}{e^z - 1} dz,
$$

where $C_1(0)$ is the positively oriented unit circle.

Solution. The function $f(z) = e^z - 1$ has a zero at $z = 0$ and, because $f'(0) = 1 \neq 0$, this zero is simple. Also, using the $2\pi i$ -periodicity of e^z , it is easy to see that $e^z = 1$ inside the unit disk $|z| < 1$ only at $z = 0$. Applying (5.7.7) with $f(z) = e^{z} - 1$ and $g(z) = \cos z$ it follows immediately that

$$
\int_{C_1(0)} \frac{e^z \cos z}{e^z - 1} dz = 2\pi i \cos 0 = 2\pi i.
$$

As an application of the counting principle we derive a famous result known as Rouché's theorem, named after the French mathematician and educator Eugène Rouché (1832–1910). We need the following lemma.

Lemma 5.7.8. *Let* φ *be a continuous function on a region* Ω *that takes only integer values. Then* ϕ *is constant in* Ω *.*

Proof. Assume that ϕ is not constant, and let z_1 and z_2 in Ω be such that $\phi(z_1)$ = $n_1 < \phi(z_2) = n_2$. Let *r* be a real number such that $n_1 < r < n_2$. Since ϕ is continuous, the sets

$$
A = \{z \in \Omega : \phi(z) < r\}
$$
\n
$$
B = \{z \in \Omega : \phi(z) > r\}
$$

are open. Also, $z_1 \in A$ and $z_2 \in B$, hence *A* and *B* are nonemtpy. They are also disjoint and satisfy $A \cup B = \Omega$. This contradicts the fact that Ω is connected. Thus ϕ is constant.

In what follows, we need a version of Lemma 5.7.8, where ϕ is a continuous, integer-valued function on an interval $[a, b]$. The preceding proof can be easily modified to cover this case.

Theorem 5.7.9. (Rouché's Theorem) Suppose that C is a simple closed path, Ω is *the region inside C, f and g are analytic inside and on C. If* $|g(z)| < |f(z)|$ *for all z on C, then*

$$
N(f+g) = N(f)
$$

in other words, $f + g$ *and* f *have the same number of zeros* θ *n in* Ω *.*