clearly positive. If $z=i y$, with $y \geq 0$, then $f(i y)=(i y)^{6}+6 i y+10=\left(-y^{6}+10\right)+6 i y$ and because $\operatorname{Im}(f(i y))=0 \Leftrightarrow y=0 \Rightarrow \operatorname{Re}(f(i y)) \neq 0$, we see that $f(i y) \neq 0$.
Step 2: Compute the change of the argument of $f(z)$ as z varies from the initial to the terminal point of $I_{1}=[0, R]$. For $z=0, f(z)=10$, and for $0 \leq z=x \leq R, f(z)=$ $x^{6}+6 x+10>0$. So the image of the interval $[0, R]$ is the interval $\left[10, R^{6}+6 R+10\right]$ and the argument of $f(z)$ does not change on I_{1}.
Step 3: Compute the change of the argument of $f(z)$ as z varies from the initial to the terminal point of the arc γ_{R}. Here we are not looking for the exact image of γ_{R} by f, but only a rough picture that gives us the change in the argument of f. For very large R and z on γ_{R}, write $z=R e^{i \theta}$, where $0 \leq \theta \leq \frac{\pi}{2}$. Then

$$
f(z)=R^{6} e^{6 i \theta}\left(1+\frac{6}{R^{5}} e^{-i 5 \theta}+\frac{10}{R^{6}} e^{-6 i \theta}\right) \approx R^{6} e^{6 i \theta}
$$

because $\frac{6}{R^{5}} e^{-i 5 \theta}+\frac{10}{R^{6}} e^{-6 i \theta} \approx 0$. So as θ varies from 0 to $\frac{\pi}{2}$, the argument of $f\left(R e^{i \theta}\right)$ varies from 0 to $6 \cdot \frac{\pi}{2}=3 \pi$. In fact, the point $f(i R)=-R^{6}+10+6 i R$ lies in the second quadrant and has argument very close to 3π. See Figure 5.61.
Step 4: Compute the change of the argument of $f(z)$ as z varies from $i R$ to 0 . As z varies from $i R$ to $0, f(z)$ varies from $w_{3}=-R^{6}+10+6 i R$ to $w_{0}=10$. Since $\operatorname{Im} f(z) \geq 0$, this tells us that the point $f(z)$ remains in the upper half-plane as $f(z)$ moves from w_{3} to w_{0}. Hence the change in the argument of $f(z)$ is $-\pi$.
Step 5: Apply the argument principle. The net change of the argument of $f(z)$ as we travel once around C is $3 \pi-\pi=2 \pi$. According to (5.7.6), the number of zeros of f inside C, and hence in the first quadrant, is $\frac{1}{2 \pi} 2 \pi=1$.

We give one more version of the counting theorem.
Theorem 5.7.6. (Variant of the Counting Theorem) Let C, Ω, and f be as in Theorem 5.7.3, let g be analytic on an open set that contains C and its interior. Let $z_{1}, z_{2}, \ldots, z_{n_{1}}$ denote the zeros of f in Ω and $p_{1}, p_{2}, \ldots, p_{n_{2}}$ denote the poles of f in Ω. Let $m\left(z_{j}\right)$ be the order of the root zero z_{j} of f and $m\left(p_{j}\right)$ denote the order of the pole p_{j} of f. Then

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C} g(z) \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j=1}^{n_{1}} m\left(z_{j}\right) g\left(z_{j}\right)-\sum_{j=1}^{n_{2}} m\left(p_{j}\right) g\left(p_{j}\right) \tag{5.7.7}
\end{equation*}
$$

Proof. We modify the proof of the previous theorem as follows. If z_{j} is a zero of f, then, since g is analytic and $\frac{f^{\prime}}{f}$ has a simple pole at z_{j}, using Lemma 5.7.1 and Proposition 5.1.3, we obtain

$$
\begin{aligned}
\operatorname{Res}\left(g \frac{f^{\prime}}{f}, z_{j}\right) & =\lim _{z \rightarrow z_{j}}\left(z-z_{j}\right) g(z) \frac{f^{\prime}(z)}{f(z)}=g\left(z_{j}\right) \lim _{z \rightarrow z_{j}}\left(z-z_{j}\right) \frac{f^{\prime}(z)}{f(z)} \\
& =g\left(z_{j}\right) \operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{j}\right)=g\left(z_{j}\right) m\left(z_{j}\right)
\end{aligned}
$$

Similarly for the poles p_{j},

