clearly positive. If z = iy, with $y \ge 0$, then $f(iy) = (iy)^6 + 6iy + 10 = (-y^6 + 10) + 6iy$ and because Im $(f(iy)) = 0 \Leftrightarrow y = 0 \Rightarrow \text{Re}(f(iy)) \ne 0$, we see that $f(iy) \ne 0$. **Step 2:** Compute the change of the argument of f(z) as z varies from the initial to the terminal point of $I_1 = [0, R]$. For z = 0, f(z) = 10, and for $0 \le z = x \le R$, $f(z) = x^6 + 6x + 10 > 0$. So the image of the interval [0, R] is the interval $[10, R^6 + 6R + 10]$ and the argument of f(z) does not change on I_1 .

Step 3: Compute the change of the argument of f(z) as z varies from the initial to the terminal point of the arc γ_R . Here we are not looking for the exact image of γ_R by f, but only a rough picture that gives us the change in the argument of f. For very large R and z on γ_R , write $z = Re^{i\theta}$, where $0 \le \theta \le \frac{\pi}{2}$. Then

$$f(z) = R^{6} e^{6i\theta} \left(1 + \frac{6}{R^{5}} e^{-i5\theta} + \frac{10}{R^{6}} e^{-6i\theta} \right) \approx R^{6} e^{6i\theta},$$

because $\frac{6}{R^5}e^{-i5\theta} + \frac{10}{R^6}e^{-6i\theta} \approx 0$. So as θ varies from 0 to $\frac{\pi}{2}$, the argument of $f(Re^{i\theta})$ varies from 0 to $6 \cdot \frac{\pi}{2} = 3\pi$. In fact, the point $f(iR) = -R^6 + 10 + 6iR$ lies in the second quadrant and has argument very close to 3π . See Figure 5.61.

Step 4: Compute the change of the argument of f(z) as z varies from iR to 0. As z varies from iR to 0, f(z) varies from $w_3 = -R^6 + 10 + 6iR$ to $w_0 = 10$. Since Im $f(z) \ge 0$, this tells us that the point f(z) remains in the upper half-plane as f(z) moves from w_3 to w_0 . Hence the change in the argument of f(z) is $-\pi$.

Step 5: Apply the argument principle. The net change of the argument of f(z) as we travel once around *C* is $3\pi - \pi = 2\pi$. According to (5.7.6), the number of zeros of *f* inside *C*, and hence in the first quadrant, is $\frac{1}{2\pi}2\pi = 1$.

We give one more version of the counting theorem.

Theorem 5.7.6. (Variant of the Counting Theorem) Let C, Ω , and f be as in Theorem 5.7.3, let g be analytic on an open set that contains C and its interior. Let $z_1, z_2, ..., z_{n_1}$ denote the zeros of f in Ω and $p_1, p_2, ..., p_{n_2}$ denote the poles of f in Ω . Let $m(z_j)$ be the order of the root zero z_j of f and $m(p_j)$ denote the order of the pole p_j of f. Then

$$\frac{1}{2\pi i} \int_C g(z) \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{n_1} m(z_j) g(z_j) - \sum_{j=1}^{n_2} m(p_j) g(p_j).$$
(5.7.7)

Proof. We modify the proof of the previous theorem as follows. If z_j is a zero of f, then, since g is analytic and $\frac{f'}{f}$ has a simple pole at z_j , using Lemma 5.7.1 and Proposition 5.1.3, we obtain

$$\operatorname{Res}\left(g\frac{f'}{f}, z_j\right) = \lim_{z \to z_j} (z - z_j)g(z)\frac{f'(z)}{f(z)} = g(z_j)\lim_{z \to z_j} (z - z_j)\frac{f'(z)}{f(z)}$$
$$= g(z_j)\operatorname{Res}\left(\frac{f'}{f}, z_j\right) = g(z_j)m(z_j).$$

Similarly for the poles p_i ,