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clearly positive. If z= iy, with y≥ 0, then f (iy)= (iy)6+6iy+10=(−y6+10)+6iy
and because Im( f (iy)) = 0 ⇔ y = 0⇒ Re( f (iy)) 6= 0, we see that f (iy) 6= 0.
Step 2: Compute the change of the argument of f (z) as z varies from the initial to
the terminal point of I1 = [0, R]. For z = 0, f (z) = 10, and for 0≤ z = x≤ R, f (z) =
x6+6x+10 > 0. So the image of the interval [0, R] is the interval [10, R6+6R+10]
and the argument of f (z) does not change on I1.
Step 3: Compute the change of the argument of f (z) as z varies from the initial to
the terminal point of the arc γR. Here we are not looking for the exact image of γR
by f , but only a rough picture that gives us the change in the argument of f . For
very large R and z on γR, write z = Reiθ , where 0≤ θ ≤ π

2 . Then

f (z) = R6e6iθ
(

1+
6

R5 e−i5θ +
10
R6 e−6iθ

)
≈ R6e6iθ ,

because 6
R5 e−i5θ + 10

R6 e−6iθ ≈ 0. So as θ varies from 0 to π

2 , the argument of f (Reiθ )

varies from 0 to 6 · π

2 = 3π . In fact, the point f (iR) = −R6 + 10+ 6iR lies in the
second quadrant and has argument very close to 3π . See Figure 5.61.
Step 4: Compute the change of the argument of f (z) as z varies from iR to 0. As
z varies from iR to 0, f (z) varies from w3 = −R6 + 10+ 6iR to w0 = 10. Since
Im f (z)≥ 0, this tells us that the point f (z) remains in the upper half-plane as f (z)
moves from w3 to w0. Hence the change in the argument of f (z) is −π .
Step 5: Apply the argument principle. The net change of the argument of f (z) as
we travel once around C is 3π−π = 2π . According to (5.7.6), the number of zeros
of f inside C, and hence in the first quadrant, is 1

2π
2π = 1. �

We give one more version of the counting theorem.

Theorem 5.7.6. (Variant of the Counting Theorem) Let C, Ω , and f be as in
Theorem 5.7.3, let g be analytic on an open set that contains C and its interior. Let
z1, z2, . . . , zn1 denote the zeros of f in Ω and p1, p2, . . . , pn2 denote the poles of f
in Ω . Let m(z j) be the order of the root zero z j of f and m(p j) denote the order of
the pole p j of f . Then

1
2πi

∫
C

g(z)
f ′(z)
f (z)

dz =
n1

∑
j=1

m(z j)g(z j)−
n2

∑
j=1

m(p j)g(p j). (5.7.7)

Proof. We modify the proof of the previous theorem as follows. If z j is a zero of
f , then, since g is analytic and f ′

f has a simple pole at z j, using Lemma 5.7.1 and
Proposition 5.1.3, we obtain

Res
(

g
f ′

f
, z j

)
= lim

z→z j
(z− z j)g(z)

f ′(z)
f (z)

= g(z j) lim
z→z j

(z− z j)
f ′(z)
f (z)

= g(z j) Res
( f ′

f
, z j

)
= g(z j)m(z j).

Similarly for the poles p j,




