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A function is called meromorphic on a region if it is analytic in this region ex-
cept at its poles. For example, sinz

z2+1 is meromorphic in the complex plane. Like zeros,
we will count poles according to multiplicity. Next we generalize Theorem 5.7.2 to
meromorphic functions.

Theorem 5.7.3. (Meromorphic Counting Theorem) Suppose that C is a simple
closed positively oriented path, Ω is the region inside C, and f is meromorphic on
Ω and analytic and nonvanishing on C. Let N( f ) denote the number of zeros of f
inside Ω and P( f ) denote the number of poles of f inside Ω , counted according to
multiplicity. Then N( f ) and P( f ) are finite and

N( f )−P( f ) =
1

2πi

∫
C

f ′(z)
f (z)

dz. (5.7.4)

Proof. That N( f ) and P( f ) are finite follows as in the proof of Theorem 5.7.2.
Applying Theorem 5.1.2 and using Lemma 5.7.1 we see that (5.7.4) holds. ■

Either of the preceding theorems is also known as the argument principle be-
cause the right sides of (5.7.3) and (5.7.4) can be interpreted as the change in argu-
ment as one runs around the image path f [C]. We now investigate this.

Proposition 5.7.4. (Branch of the Logarithm) If f is analytic and nonvanishing on
a simply connected region Ω , then there exists an analytic branch of the logarithm,
log f = ln | f |+ iarg f , such that for all z in Ω we have

d
dz

log f (z) =
f ′(z)
f (z)

. (5.7.5)

Proof. We know from Corollary 3.6.9(ii) that every analytic function on a simply
connected region Ω has an antiderivative. In particular, if f is analytic and non-
vanishing on Ω , then f ′/ f is analytic on Ω and thus has an antiderivative g on
Ω . We verify that the derivative of f/eg is zero, hence by Theorem 2.5.7 we have
that f = ceg for some nonzero complex constant c. Writing c = ed , we obtain that
f = eg+d , where g is analytic and d is a constant.

We call the function g+ d a branch of the logarithm of f and write it as log f .
Indeed, the branch of the logarithm has the form

log f = ln | f |+ iarg f ,
where arg f is a continuous branch of the argument. Then

elog f = f hence (log f )′elog f = f ′,
which implies (5.7.5). ■

The integrand in (5.7.4) suggests a connection with the logarithm of f , which
we now explore. Let f and C be as in Theorem 5.7.3. Since f [C] is a closed and
bounded set that does not contain the origin, we can partition C into small subarcs
γ j ( j = 1, . . . ,n) such that each image f [γ j] is contained in a simply connected region
that does not contain the origin, as shown in Figure 5.58.


