352 5 Residue Theory

A function is called meromorphic on a region if it is analytic in this region ex-
cept at its poles. For example, ;zlizl is meromorphic in the complex plane. Like zeros,
we will count poles according to multiplicity. Next we generalize Theorem 5.7.2 to

meromorphic functions.

Theorem 5.7.3. (Meromorphic Counting Theorem) Suppose that C is a simple
closed positively oriented path, Q2 is the region inside C, and f is meromorphic on
Q and analytic and nonvanishing on C. Let N(f) denote the number of zeros of f
inside Q and P(f) denote the number of poles of f inside Q, counted according to
multiplicity. Then N(f) and P(f) are finite and
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Proof. That N(f) and P(f) are finite follows as in the proof of Theorem 5.7.2.
Applying Theorem 5.1.2 and using Lemma 5.7.1 we see that (5.7.4) holds. |

Either of the preceding theorems is also known as the argument principle be-
cause the right sides of (5.7.3) and (5.7.4) can be interpreted as the change in argu-
ment as one runs around the image path f[C]. We now investigate this.

Proposition 5.7.4. (Branch of the Logarithm) If f is analytic and nonvanishing on
a simply connected region €2, then there exists an analytic branch of the logarithm,
log f =1In|f|+iarg f, such that for all z in Q we have
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Proof. We know from Corollary 3.6.9(ii) that every analytic function on a simply
connected region 2 has an antiderivative. In particular, if f is analytic and non-
vanishing on £, then f’/f is analytic on Q and thus has an antiderivative g on
Q. We verify that the derivative of f/e$ is zero, hence by Theorem 2.5.7 we have
that f = ce? for some nonzero complex constant ¢. Writing ¢ = ¢, we obtain that
f = et where g is analytic and d is a constant.

We call the function g+ d a branch of the logarithm of f and write it as log f.
Indeed, the branch of the logarithm has the form

(5.7.5)

log f = In|f| +iarg f.
where arg f is a continuous branch of the argument. Then
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which implies (5.7.5). |

The integrand in (5.7.4) suggests a connection with the logarithm of f, which
we now explore. Let f and C be as in Theorem 5.7.3. Since f[C] is a closed and
bounded set that does not contain the origin, we can partition C into small subarcs
v; (j =1,...,n) such that each image f[y;] is contained in a simply connected region
that does not contain the origin, as shown in Figure 5.58.



