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where the (finite) sum on the right runs over all the poles z; of f(z), including 0. Prove (5.6.6) by
modifying the proof of Proposition 5.6.2; more specifically, explain what happens to (5.6.4) under
the current conditions.

In Exercises 14-16, use (5.6.6) to derive the identity.
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17. Project Problem: Sums of the reciprocals of even powers of integers. In this exercise, we
use (5.6.6) to derive
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where n is a positive integer, By, is the Bernoulli number (Example 4.3.12). This remarkable iden-
tity sums the reciprocals of the even powers of the integers. There is no known finite expression
corresponding to any odd powers.

(a) Show that if f(z) = ﬁ then (5.6.6) becomes
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(b) Using the Taylor series expansion of zcotz from Exercise 31, Section 4.3, obtain
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then derive (5.6.7).
18. Project Problem: Sums with alternating signs. (a) Modify the proof of Proposition 5.6.2 to

prove the following summation result. Suppose that f = 5 is a rational function with degreeq >
2+ degree p. Suppose further that f has no poles at the integers, except possibly at 0. Then,
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where the (finite) sum on the right is taken over all the poles z; of f, including 0. [Hint: You need
a version of Lemma 5.6.1 for the cosecant.]
(b) Show that if f(z) = % then (5.6.9) becomes
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