Proof. Parametrize the integral in (5.4.20) by $z=z_{0}+r e^{i \theta}$, where $\theta_{0} \leq \theta \leq \theta_{0}+\alpha$, $d z=r i e^{i \theta} d \theta, z-z_{0}=r e^{i \theta}$. Then

$$
\begin{aligned}
& \frac{1}{i \alpha} \int_{\sigma_{r}} \frac{f(z)}{z-z_{0}} d z \\
& =\frac{1}{i \alpha} \int_{\theta_{0}}^{\theta_{0}+\alpha} \frac{f\left(z_{0}+r e^{i \theta}\right)}{r e^{i \theta}} i r e^{i \theta} d \theta \\
& =\frac{1}{\alpha} \int_{\theta_{0}}^{\theta_{0}+\alpha} f\left(z_{0}+r e^{i \theta}\right) d \theta
\end{aligned}
$$

Define the function

$$
F(r)=\frac{1}{\alpha} \int_{\theta_{0}}^{\theta_{0}+\alpha} f\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Since f is continuous on $\overline{B_{r_{0}}\left(z_{0}\right)}$, it follows that it is uniformly continuous on this set. Thus given $\varepsilon>0$ there is $\delta>0$ such that

Fig. 5.29 Circular arc of angle α. $\left|w-w^{\prime}\right|<\delta$ implies $\left|f(w)-f\left(w^{\prime}\right)\right|<\varepsilon$.

Then $\left|r-r^{\prime}\right|<\delta$ implies $\left|\left(z_{0}+r e^{i \theta}\right)-\left(z_{0}+r^{\prime} e^{i \theta}\right)\right|<\delta$ which in turn implies $\left|f\left(z_{0}+r e^{i \theta}\right)-f\left(z_{0}+r^{\prime} e^{i \theta}\right)\right|<\varepsilon$. The $M L$-inequality yields

$$
\left|F(r)-F\left(r^{\prime}\right)\right|=\left|\frac{1}{\alpha} \int_{\theta_{0}}^{\theta_{0}+\alpha}\left(f\left(z_{0}+r e^{i \theta}\right)-f\left(z_{0}+r^{\prime} e^{i \theta}\right)\right) d \theta\right| \leq \varepsilon
$$

It follows that F is also continuous on $\left[0, r_{0}\right]$. Consequently,

$$
\lim _{r \rightarrow 0^{+}} F(r)=F(0)=\frac{1}{\alpha} \int_{\theta_{0}}^{\theta_{0}+\alpha} f\left(z_{0}\right) d \theta=f\left(z_{0}\right)
$$

which is equivalent to (5.4.20).
The following simple consequence of Lemma 5.4.7 is useful.
Corollary 5.4.8. Suppose that g is an analytic function in a deleted neighborhood of z_{0} with a simple pole at z_{0}. For $0<r \leq r_{0}$, let σ_{r} be the circular arc at angle α (see Figure 5.29). Then we have

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \int_{\sigma_{r}} g(z) d z=i \alpha \operatorname{Res}\left(g, z_{0}\right) \tag{5.4.21}
\end{equation*}
$$

Proof. Let $f(z)=\left(z-z_{0}\right) g(z)$ for $z \neq z_{0}$ and define $f\left(z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) g(z)=$ $\operatorname{Res}\left(g, z_{0}\right)$. Since $g(z)$ has a simple pole at z_{0}, it follows from Theorem 4.5.15 that f is analytic at z_{0}. Now apply Lemma 5.4.7 to f and (5.4.21) follows from (5.4.20), since for $z \neq z_{0}, f(z) /\left(z-z_{0}\right)=g(z)$.

The improper integrals that we consider next differ from previous ones in that they are not always convergent; however, their Cauchy principal values do exist.

