Corollary 5.4.4. Let p, q are be complex polynomials with degree $q \geq 1+$ degree p. Let σ_{R} denote the semi-circular arc consisting of all $z=R e^{i \theta}$, where $0 \leq \theta \leq \pi$. Then $\lim _{R \rightarrow \infty} \int_{\sigma_{R}} e^{i s z} \frac{p(z)}{q(z)} d z=0$ for all $s>0$.

Proof. Let $M(R)$ denote the maximum of $|p(z) / q(z)|$ for z on σ_{R}. Since degree q $\geq 1+$ degree $p, M(R) \rightarrow 0$ as $R \rightarrow \infty$. Applying Lemma 5.4.3 we obtain the claimed assertion.

Next we evaluate the improper integral

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x
$$

It is not difficult to show that this integral is convergent using integration by parts (Exercise 19). However, because the degree of $x^{2}+a^{2}$ is only one more than the degree of x, the estimate in Step 3 of Example 5.4 .1 will not be sufficient to show that the integral on the expanding semi-circle tends to 0 . For this purpose we appeal to Jordan's lemma.

Example 5.4.5. (Applying Jordan's lemma) Derive the identity

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x=\frac{\pi}{e^{a}}, \quad a>0 \tag{5.4.14}
\end{equation*}
$$

Solution. Consider the contour integral

$$
\begin{equation*}
I_{\gamma_{R}}=\int_{\sigma_{R}} \frac{z}{z^{2}+a^{2}} e^{i z} d z+\int_{-R}^{R} \frac{x}{x^{2}+a^{2}} e^{i x} d x=I_{\sigma_{R}}+I_{R} \tag{5.4.15}
\end{equation*}
$$

where σ_{R} is the circular arc shown in Figure 5.24 and $\gamma_{R}=\sigma_{R} \cup[-R, R]$. By Jordan's lemma (precisely by Corollary 5.4.4), $\lim _{R \rightarrow \infty} I_{\sigma_{R}}=0$. For $R>a, \frac{z}{z^{2}+a^{2}} e^{i z}$ has a simple pole inside γ_{R} at $i a$. By the residue theorem, for all $R>a$, we obtain

$$
\begin{aligned}
I_{\gamma_{R}} & =2 \pi i \operatorname{Res}\left(\frac{z e^{i z}}{z^{2}+a^{2}}, i a\right) \\
& =2 \pi i \frac{(i a) e^{i(i a)}}{2(i a)} \\
& =\frac{\pi}{e^{a}} i .
\end{aligned}
$$

Taking the limit as $R \rightarrow \infty$ in (5.4.15) and using the fact that $I_{\sigma_{R}} \rightarrow 0$, we deduce

Fig. 5.24 The path and poles for the contour integral in Example 5.4.5.

