**Corollary 5.4.4.** Let p, q are be complex polynomials with degree  $q \ge 1 + degree p$ . Let  $\sigma_R$  denote the semi-circular arc consisting of all  $z = Re^{i\theta}$ , where  $0 \le \theta \le \pi$ . Then  $\lim_{R\to\infty} \int_{\sigma_R} e^{isz} \frac{p(z)}{q(z)} dz = 0$  for all s > 0.

*Proof.* Let M(R) denote the maximum of |p(z)/q(z)| for z on  $\sigma_R$ . Since degree  $q \ge 1 + \text{degree } p, M(R) \to 0$  as  $R \to \infty$ . Applying Lemma 5.4.3 we obtain the claimed assertion.

Next we evaluate the improper integral

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} \, dx.$$

It is not difficult to show that this integral is convergent using integration by parts (Exercise 19). However, because the degree of  $x^2 + a^2$  is only one more than the degree of *x*, the estimate in Step 3 of Example 5.4.1 will not be sufficient to show that the integral on the expanding semi-circle tends to 0. For this purpose we appeal to Jordan's lemma.

Example 5.4.5. (Applying Jordan's lemma) Derive the identity

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} \, dx = \frac{\pi}{e^a}, \quad a > 0.$$
 (5.4.14)

Solution. Consider the contour integral

$$I_{\gamma_R} = \int_{\sigma_R} \frac{z}{z^2 + a^2} e^{iz} dz + \int_{-R}^{R} \frac{x}{x^2 + a^2} e^{ix} dx = I_{\sigma_R} + I_R,$$
(5.4.15)

where  $\sigma_R$  is the circular arc shown in Figure 5.24 and  $\gamma_R = \sigma_R \cup [-R, R]$ . By Jordan's lemma (precisely by Corollary 5.4.4),  $\lim_{R\to\infty} I_{\sigma_R} = 0$ . For R > a,  $\frac{z}{z^2+a^2}e^{iz}$  has a simple pole inside  $\gamma_R$  at *ia*. By the residue theorem, for all R > a, we obtain

$$I_{\gamma_{R}} = 2\pi i \operatorname{Res}\left(\frac{ze^{iz}}{z^{2}+a^{2}}, ia
ight)$$
  
=  $2\pi i \frac{(ia)e^{i(ia)}}{2(ia)}$   
=  $\frac{\pi}{e^{a}} i.$ 

Taking the limit as  $R \to \infty$  in (5.4.15) and using the fact that  $I_{\sigma_R} \to 0$ , we deduce



**Fig. 5.24** The path and poles for the contour integral in Example 5.4.5.