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and combining this inequality with (5.4.12) concludes the proof of the lemma. ■

Lemma 5.4.3. (General Version of Jordan’s Lemma) Let R0 > 0 and 0 ≤ θ1 <
θ2 ≤ π . For R ≥ R0, let σR be the circular arc of all z = Reiθ with 0 ≤ θ1 ≤ θ ≤
θ2 ≤ π as shown in Figure 5.23. Let f be a continuous complex-valued function
defined on all arcs σR and let M(R) denote the maximum value of | f | on σR. If
lim
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M(R) = 0, then for all s > 0
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Proof. For s > 0, we have from (5.4.8),
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if 0 ≤ θ1 ≤ θ2 ≤ π . Parametrize σR
by γ(θ) = Reiθ , where θ1 ≤ θ ≤ θ2.
Then
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and hence
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Fig. 5.23 The circular arcs σR
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From inequality (5.4.9) we obtain that the integral in (5.4.13) is bounded by π/(sR).
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as R → ∞. This concludes the proof of the lemma. ■

An analog of Jordan’s lemma holds for s < 0 if the circular arc σR is in the lower
half-plane. Applying Jordan’s lemma in the special case when f (z) is a rational
function, we obtain the following useful result.


