$$
2 \int_{0}^{\frac{\pi}{2}} e^{-\frac{2}{\pi} R \theta} d \theta=2 \int_{0}^{R} e^{-t} d t \frac{\pi}{2 R}=2\left(1-e^{-R}\right) \frac{\pi}{2 R} \leq \frac{\pi}{R}
$$

and combining this inequality with (5.4.12) concludes the proof of the lemma.
Lemma 5.4.3. (General Version of Jordan's Lemma) Let $R_{0}>0$ and $0 \leq \theta_{1}<$ $\theta_{2} \leq \pi$. For $R \geq R_{0}$, let σ_{R} be the circular arc of all $z=R e^{i \theta}$ with $0 \leq \theta_{1} \leq \theta \leq$ $\theta_{2} \leq \pi$ as shown in Figure 5.23. Let f be a continuous complex-valued function defined on all arcs σ_{R} and let $M(R)$ denote the maximum value of $|f|$ on σ_{R}. If $\lim _{R \rightarrow \infty} M(R)=0$, then for all $s>0$

$$
\lim _{R \rightarrow \infty} \int_{\sigma_{R}} e^{i s z} f(z) d z=0
$$

Proof. For $s>0$, we have from (5.4.8), $\left|e^{i s z}\right|=e^{-s R \sin \theta}$.
Note that since $e^{-s R \sin \theta}>0$, its integral increases if we increase the size of the interval of integration. Thus

$$
\int_{\theta_{1}}^{\theta_{2}} e^{-s r \sin \theta} d \theta \leq \int_{0}^{\pi} e^{-s r \sin \theta} d \theta
$$

if $0 \leq \theta_{1} \leq \theta_{2} \leq \pi$. Parametrize σ_{R} by $\gamma(\theta)=R e^{i \theta}$, where $\theta_{1} \leq \theta \leq \theta_{2}$. Then
$\gamma^{\prime}(\theta)=R i e^{i \theta}, \quad\left|\gamma^{\prime}(\theta)\right| d \theta=R d \theta$
and hence

Fig. 5.23 The circular arcs σ_{R}

$$
\begin{align*}
\left|\int_{\sigma_{R}} e^{i s z} f(z) d z\right| & \leq \int_{\theta_{1}}^{\theta_{2}}\left|e^{i s z} f(z)\right| R d \theta \\
& \leq R M(R) \int_{\theta_{1}}^{\theta_{2}} e^{-s R \sin \theta} d \theta \\
& \leq R M(R) \int_{0}^{\pi} e^{-s R \sin \theta} d \theta \tag{5.4.13}
\end{align*}
$$

From inequality (5.4.9) we obtain that the integral in (5.4.13) is bounded by $\pi /(s R)$. Thus

$$
\left|\int_{\sigma_{R}} e^{i s z} f(z) d z\right| \leq R M(R) \frac{\pi}{s R}=\frac{\pi}{s} M(R) \rightarrow 0
$$

as $R \rightarrow \infty$. This concludes the proof of the lemma.
An analog of Jordan's lemma holds for $s<0$ if the circular arc σ_{R} is in the lower half-plane. Applying Jordan's lemma in the special case when $f(z)$ is a rational function, we obtain the following useful result.

