5.4 Products of Rational and Trigonometric Functions

$$2\int_0^{\frac{\pi}{2}} e^{-\frac{2}{\pi}R\theta} d\theta = 2\int_0^R e^{-t} dt \frac{\pi}{2R} = 2(1-e^{-R})\frac{\pi}{2R} \le \frac{\pi}{R}$$

and combining this inequality with (5.4.12) concludes the proof of the lemma.

Lemma 5.4.3. (General Version of Jordan's Lemma) Let $R_0 > 0$ and $0 \le \theta_1 < \theta_2 \le \pi$. For $R \ge R_0$, let σ_R be the circular arc of all $z = Re^{i\theta}$ with $0 \le \theta_1 \le \theta \le \theta_2 \le \pi$ as shown in Figure 5.23. Let f be a continuous complex-valued function defined on all arcs σ_R and let M(R) denote the maximum value of |f| on σ_R . If $\lim_{R\to\infty} M(R) = 0$, then for all s > 0

$$\lim_{R\to\infty}\int_{\sigma_R}e^{isz}f(z)\,dz=0.$$

Proof. For s > 0, we have from (5.4.8), $|e^{isz}| = e^{-sR\sin\theta}$.

Note that since $e^{-sR\sin\theta} > 0$, its integral increases if we increase the size of the interval of integration. Thus

$$\int_{\theta_1}^{\theta_2} e^{-sr\sin\theta} \, d\theta \leq \int_0^{\pi} e^{-sr\sin\theta} \, d\theta$$

if $0 \le \theta_1 \le \theta_2 \le \pi$. Parametrize σ_R by $\gamma(\theta) = Re^{i\theta}$, where $\theta_1 \le \theta \le \theta_2$. Then

$$\gamma'(\theta) = Rie^{i\theta}, \qquad |\gamma'(\theta)|d\theta = Rd\theta$$

and hence

Fig. 5.23 The circular arcs σ_R

$$\begin{split} \int_{\sigma_R} e^{isz} f(z) \, dz \bigg| &\leq \int_{\theta_1}^{\theta_2} \left| e^{isz} f(z) \right| R \, d\theta \\ &\leq R M(R) \int_{\theta_1}^{\theta_2} e^{-sR\sin\theta} \, d\theta \\ &\leq R M(R) \int_0^{\pi} e^{-sR\sin\theta} \, d\theta \,. \end{split}$$
(5.4.13)

From inequality (5.4.9) we obtain that the integral in (5.4.13) is bounded by $\pi/(sR)$. Thus

$$\left| \int_{\sigma_R} e^{isz} f(z) \, dz \right| \le RM(R) \frac{\pi}{sR} = \frac{\pi}{s} M(R) \to 0$$

as $R \rightarrow \infty$. This concludes the proof of the lemma.

An analog of Jordan's lemma holds for s < 0 if the circular arc σ_R is in the lower half-plane. Applying Jordan's lemma in the special case when f(z) is a rational function, we obtain the following useful result.