$$
\int_{-\infty}^{\infty} \frac{\cos (s x)}{x^{2}+a^{2}} d x=\frac{\pi}{a} e^{-s a}
$$

By observing that $\sin \theta \geq 0$ for $0 \leq \theta \leq \pi$, we were able in (5.4.8) to obtain the inequality $\left|e^{i s z}\right| \leq 1$ for all $s \geq 0$ and $z=R e^{i \theta}, 0 \leq \theta \leq \pi$. A more precise analysis of $\sin \theta$ yields a better estimate on $\left|e^{i s z}\right|$, which in turn makes it possible to compute integrals of the form (5.4.1), where degree $q \geq 1+$ degree $p$.

Lemma 5.4.2. (Jordan's Lemma) The following inequality is valid for $R>0$ :

$$
\begin{equation*}
\int_{0}^{\pi} e^{-R \sin \theta} d \theta \leq \frac{\pi}{R} \tag{5.4.9}
\end{equation*}
$$

Proof. We begin by writing

$$
\int_{0}^{\pi} e^{-R \sin \theta} d \theta=\int_{0}^{\frac{\pi}{2}} e^{-R \sin \theta} d \theta+\int_{\frac{\pi}{2}}^{\pi} e^{-R \sin \theta} d \theta
$$

Then we change variables $t=\pi-\theta$ in the second integral above and, noting that $\sin (\theta)=\sin (\pi-\theta)=\sin t$ and $d \theta=-d t$, we obtain

$$
\begin{equation*}
\int_{0}^{\pi} e^{-R \sin \theta} d \theta=\int_{0}^{\frac{\pi}{2}} e^{-R \sin \theta} d \theta-\int_{\frac{\pi}{2}}^{0} e^{-R \sin t} d t=2 \int_{0}^{\frac{\pi}{2}} e^{-R \sin \theta} d \theta \tag{5.4.10}
\end{equation*}
$$

At this point, we need an estimate on $\sin \theta$. On the interval $\left[0, \frac{\pi}{2}\right]$, the graph of $\sin \theta$ is concave down, because the second derivative is negative. Hence the graph of $\sin \theta$ for $0 \leq \theta \leq \frac{\pi}{2}$ is above the chordal line that joins two points on the graph. In particular, it is above the chord that joins the origin to the point $\left(\frac{\pi}{2}, 1\right)$, whose equation is $y=\frac{2}{\pi} \theta$.


Fig. 5.22 Proof of (5.4.11).

This fact is expressed analytically by the inequality

$$
\begin{equation*}
\sin \theta \geq \frac{2}{\pi} \theta \tag{5.4.11}
\end{equation*}
$$

which is valid for $0 \leq \theta \leq \frac{\pi}{2}$, whose geometric proof is illustrated in Figure 5.22.
Inequality (5.4.11) implies that $-\sin \theta \leq-\frac{2}{\pi} \theta$ and combining this with (5.4.10) we deduce

$$
\begin{equation*}
\int_{0}^{\pi} e^{-R \sin \theta} d \theta \leq 2 \int_{0}^{\frac{\pi}{2}} e^{-\frac{2}{\pi} R \theta} d \theta \tag{5.4.12}
\end{equation*}
$$

Changing variables $t=\frac{2}{\pi} R \theta$, we write

