5 Residue Theory

$$\int_{-\infty}^{\infty} \frac{\cos(sx)}{x^2 + a^2} \, dx = \frac{\pi}{a} e^{-sa}.$$

By observing that $\sin \theta \ge 0$ for $0 \le \theta \le \pi$, we were able in (5.4.8) to obtain the inequality $|e^{isz}| \le 1$ for all $s \ge 0$ and $z = Re^{i\theta}$, $0 \le \theta \le \pi$. A more precise analysis of $\sin \theta$ yields a better estimate on $|e^{isz}|$, which in turn makes it possible to compute integrals of the form (5.4.1), where degree $q \ge 1 + \text{degree } p$.

Lemma 5.4.2. (Jordan's Lemma) *The following inequality is valid for* R > 0*:*

$$\int_0^{\pi} e^{-R\sin\theta} d\theta \le \frac{\pi}{R}.$$
(5.4.9)

Proof. We begin by writing

$$\int_0^{\pi} e^{-R\sin\theta} d\theta = \int_0^{\frac{\pi}{2}} e^{-R\sin\theta} d\theta + \int_{\frac{\pi}{2}}^{\pi} e^{-R\sin\theta} d\theta.$$

Then we change variables $t = \pi - \theta$ in the second integral above and, noting that $\sin(\theta) = \sin(\pi - \theta) = \sin t$ and $d\theta = -dt$, we obtain

$$\int_0^{\pi} e^{-R\sin\theta} d\theta = \int_0^{\frac{\pi}{2}} e^{-R\sin\theta} d\theta - \int_{\frac{\pi}{2}}^0 e^{-R\sin t} dt = 2\int_0^{\frac{\pi}{2}} e^{-R\sin\theta} d\theta.$$
 (5.4.10)

At this point, we need an estimate on $\sin \theta$. On the interval $[0, \frac{\pi}{2}]$, the graph of $\sin \theta$ is concave down, because the second derivative is negative. Hence the graph of $\sin \theta$ for $0 \le \theta \le \frac{\pi}{2}$ is above the chordal line that joins two points on the graph. In particular, it is above the chord that joins the origin to the point $(\frac{\pi}{2}, 1)$, whose equation is $y = \frac{2}{\pi} \theta$.

Fig. 5.22 Proof of (5.4.11).

This fact is expressed analytically by the inequality

$$\sin\theta \ge \frac{2}{\pi}\theta\,,\tag{5.4.11}$$

which is valid for $0 \le \theta \le \frac{\pi}{2}$, whose geometric proof is illustrated in Figure 5.22.

Inequality (5.4.11) implies that $-\sin\theta \le -\frac{2}{\pi}\theta$ and combining this with (5.4.10) we deduce

$$\int_{0}^{\pi} e^{-R\sin\theta} d\theta \le 2 \int_{0}^{\frac{\pi}{2}} e^{-\frac{2}{\pi}R\theta} d\theta.$$
 (5.4.12)

Changing variables $t = \frac{2}{\pi} R\theta$, we write

322