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Step 2: Set up and evaluate the contour integral. Since
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we will consider the contour integral
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where Yz and o are as in Figure 5.21. For R > a, 2

e has one simple pole inside
Yz at z = ia. In view of Proposition 5.1.3(ii), the residue there is
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By the residue theorem, for all R > a, we have
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Step 3: Show that limg_, IqR =0.Fors>0and0<0 <, we have sin 8 > 0, hence
—sRsin® <0, and so e *Rsi"0 < 1 Write z on o, as z = Re’® = R(cos @ +isin@),
where 0 < 6 < 7. Then
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Hence, for R > a and z on the semi-circle 6k, we have
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and so the ML-inequality for path integrals yields
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This estimate works because the degree of the polynomial in the denominator is
greater than the degree of the polynomial in the numerator by 2.

Step 4: Compute the desired improper integral. Let R — o in (5.4.7), use Step 3,
and get
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Taking real parts on both sides and using (5.4.5), we obtain the desired integral



