Step 2: Set up and evaluate the contour integral. Since

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\cos (s x)}{x^{2}+a^{2}} d x=\int_{-\infty}^{\infty} \operatorname{Re}\left(\frac{e^{i s x}}{x^{2}+a^{2}}\right) d x=\operatorname{Re}\left(\int_{-\infty}^{\infty} \frac{e^{i s x}}{x^{2}+a^{2}} d x\right) \tag{5.4.5}
\end{equation*}
$$

we will consider the contour integral

$$
\begin{equation*}
I_{\gamma_{R}}=\int_{\gamma_{R}} \frac{e^{i s z}}{z^{2}+a^{2}} d z=\int_{\sigma_{R}} \frac{e^{i s z}}{z^{2}+a^{2}} d z+\int_{-R}^{R} \frac{e^{i s x}}{x^{2}+a^{2}} d x=I_{\sigma_{R}}+I_{R} \tag{5.4.6}
\end{equation*}
$$

where γ_{R} and σ_{R} are as in Figure 5.21. For $R>a, \frac{e^{i s z}}{z^{2}+a^{2}}$ has one simple pole inside γ_{R} at $z=i a$. In view of Proposition 5.1.3(ii), the residue there is

$$
\operatorname{Res}\left(\frac{e^{i s z}}{z^{2}+a^{2}}, i a\right)=\frac{e^{i s(i a)}}{2 i a}=\frac{e^{-s a}}{2 i a}
$$

By the residue theorem, for all $R>a$, we have

$$
\begin{equation*}
I_{\gamma_{R}}=I_{\sigma_{R}}+I_{R}=2 \pi i \frac{e^{-s a}}{2 i a}=\frac{\pi}{a} e^{-s a} \tag{5.4.7}
\end{equation*}
$$

Step 3: Show that $\lim _{R \rightarrow \infty} I_{\sigma_{R}}=0$. For $s \geq 0$ and $0 \leq \theta \leq \pi$, we have $\sin \theta \geq 0$, hence $-s R \sin \theta \leq 0$, and so $e^{-s R \sin \theta} \leq 1$. Write z on σ_{R}, as $z=R e^{i \theta}=R(\cos \theta+i \sin \theta)$, where $0 \leq \theta \leq \pi$. Then

$$
\begin{equation*}
\left|e^{i s z}\right|=\left|e^{i s R(\cos \theta+i \sin \theta)}\right|=\overbrace{\mid e^{i s R \cos \theta}}^{1}| | e^{-s R \sin \theta} \mid=e^{-s R \sin \theta} \leq 1 . \tag{5.4.8}
\end{equation*}
$$

Hence, for $R>a$ and z on the semi-circle σ_{R}, we have

$$
\left|\frac{e^{i s z}}{z^{2}+a^{2}}\right| \leq \frac{1}{\left|z^{2}+a^{2}\right|} \leq \frac{1}{|z|^{2}-a^{2}}=\frac{1}{R^{2}-a^{2}}
$$

and so the $M L$-inequality for path integrals yields

$$
\left|\int_{\sigma_{R}} \frac{e^{i s z}}{z^{2}+a^{2}} d z\right| \leq \ell\left(\sigma_{R}\right) \frac{1}{R^{2}-a^{2}}=\frac{\pi R}{R^{2}-a^{2}} \rightarrow 0, \text { as } R \rightarrow \infty
$$

This estimate works because the degree of the polynomial in the denominator is greater than the degree of the polynomial in the numerator by 2 .
Step 4: Compute the desired improper integral. Let $R \rightarrow \infty$ in (5.4.7), use Step 3, and get

$$
\lim _{R \rightarrow \infty} I_{\sigma_{R}}+\lim _{R \rightarrow \infty} I_{R}=0+\int_{-\infty}^{\infty} \frac{e^{i s x}}{x^{2}+a^{2}} d x=\frac{\pi}{a} e^{-s a}
$$

Taking real parts on both sides and using (5.4.5), we obtain the desired integral

