Example 5.3.8. (An integral involving $\ln x$) Derive the identity

$$\int_0^\infty \frac{\ln x}{x^4 + 1} \, dx = -\frac{\pi^2}{8\sqrt{2}}.\tag{5.3.15}$$

Solution. Let $x = e^t$, $\ln x = t$, $dx = e^t dt$. This transforms the integral into

$$\int_{-\infty}^{\infty} \frac{t}{e^{4t}+1} e^t dt = \int_{-\infty}^{\infty} \frac{x e^x}{e^{4x}+1} dx.$$

To evaluate this integral, we integrate the function

$$f(z) = \frac{ze^z}{e^{4z} + 1}$$

over the rectangular contour γ_R in Figure 5.20. Let I_j denote the integral of f over γ_j . Here again, we chose the vertical sides of γ_R so that on the returning path γ_3 the denominator equals to $e^{4x}+1$. As we will see momentarily, this enables us to relate I_3 to I_1 . Let us now compute $I_{\gamma_R} = \int_{\gamma_R} f(z) dz$.

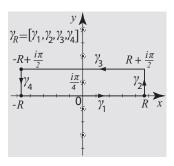


Fig. 5.20 The path and poles for the contour integral in Example 5.3.8.

The function f has one (simple) pole at $z = i\frac{\pi}{4}$ inside γ_R . By Proposition 5.1.3(ii), the residue there is

$$\operatorname{Res}\left(\frac{ze^{z}}{e^{4z}+1}, i\frac{\pi}{4}\right) = \frac{i\frac{\pi}{4}e^{i\frac{\pi}{4}}}{4e^{i\pi}} = -\frac{i\pi(1+i)}{16\sqrt{2}}.$$

So by the residue theorem

$$I_{\gamma_R} = 2\pi i \left(-\frac{i\pi(1+i)}{16\sqrt{2}} \right) = \frac{\pi^2(1+i)}{8\sqrt{2}} = I_1 + I_2 + I_3 + I_4.$$
 (5.3.16)

Examining each I_i (j = 1, ..., 4), we have

$$I_1 = \int_{\gamma_1} \frac{ze^z}{e^{4z} + 1} dz = \int_{-R}^R \frac{xe^x}{e^{4x} + 1} dx.$$

On γ_3 , $z = x + i\frac{\pi}{2}$, dz = dx, so using $e^{i\pi/2} = i$, we get