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Example 5.3.8. (An integral involving Inx) Derive the identity
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Solution. Let x = €', Inx = ¢, dx = ¢'dt. This transforms the integral into
I S < xe'
.[me4t+le dt:[m764x+ldx.

To evaluate this integral, we integrate
the function
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gral of f over 7y;. Here again, we =R o b R
chose the vertical sides of Yz so that
on the returning path y; the denom-
inator equals to e* 4 1. As we will
see momentarily, this enables us to

relate I3 to I;. Let us now compute Fig. 5.20 The path and poles for
L. — dz. the contour integral in Exam-
= /) ple 5.3.8.

The function f has one (simple) pole at z = i 7 inside yz. By Proposition 5.1.3(ii),
the residue there is
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So by the residue theorem
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Examining each I; (j =1, ..., 4), we have
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On 13, z=x+i%, dz = dx, so using e? =i, we get





