There are interesting integrals of rational functions that are not computable using semi-circular contours as in Example 5.3.3. One such integral is

$$\int_0^\infty \frac{dx}{x^3 + 1}.$$
 (5.3.13)

This integral can be reduced to an integral involving exponential functions, via the substitution $x = e^t$. We outline this useful technique in the following example.

Example 5.3.7. (The substitution $x = e^t$) For $\alpha > 1$ establish the identity

$$\int_0^\infty \frac{1}{x^\alpha + 1} \, dx = \frac{\pi}{\alpha \sin \frac{\pi}{\alpha}}.\tag{5.3.14}$$

Solution. Step 1: Show that the integral converges. The integrand is continuous, so it is enough to show that the integral converges on $[1,\infty)$. We have $\frac{1}{x^{\alpha}+1} \leq \frac{1}{x^{\alpha}}$, and the integral is convergent since $\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx < \infty$. **Step 2:** Apply the substitution $x = e^t$. Let $x = e^t$, $dx = e^t dt$, and note that as x varies

Step 2: Apply the substitution $x = e^t$. Let $x = e^t$, $dx = e^t dt$, and note that as *x* varies from 0 to ∞ , *t* varies from $-\infty$ to ∞ , and so

$$I = \int_0^\infty \frac{1}{x^{\alpha} + 1} \, dx = \int_{-\infty}^\infty \frac{e^t}{e^{\alpha t} + 1} \, dt = \int_{-\infty}^\infty \frac{e^x}{e^{\alpha x} + 1} \, dx,$$

where, for convenience, in the last integral we have used *x* as a variable of integration instead of *t*. Identity (5.3.14) follows now from Example 5.3.6. \Box

The tricky part in Example 5.3.6 is choosing the contour. Let us clarify this part with one more example. For instance, we compute the integral

$$\int_0^\infty \frac{\ln x}{x^4 + 1} \, dx.$$

This integral is improper as the interval of integration is infinite and the integrand tends to $-\infty$ as $x \downarrow 0$. To define the convergence of such integrals, we follow the general procedure of taking all one-sided limits one at a time; see Figure 5.19. Thus

Fig. 5.19 Splitting an improper integral.

$$\int_{0}^{\infty} \frac{\ln x}{x^{4} + 1} \, dx = \lim_{\epsilon \downarrow 0} \int_{\epsilon}^{1} \frac{\ln x}{x^{4} + 1} \, dx + \lim_{b \to \infty} \int_{1}^{b} \frac{\ln x}{x^{4} + 1} \, dx$$

It is not difficult to show that both limits exist and thus the integral converges. We look at consider this integral in the next example.