
316 5 Residue Theory

There are interesting integrals of rational functions that are not computable using
semi-circular contours as in Example 5.3.3. One such integral is∫

∞

0

dx
x3 +1

. (5.3.13)

This integral can be reduced to an integral involving exponential functions, via the
substitution x = et . We outline this useful technique in the following example.

Example 5.3.7. (The substitution x = et ) For α > 1 establish the identity∫
∞

0

1
xα +1

dx =
π

α sin π

α

. (5.3.14)

Solution. Step 1: Show that the integral converges. The integrand is continuous, so
it is enough to show that the integral converges on [1,∞). We have 1

xα+1 ≤
1

xα , and
the integral is convergent since

∫
∞

1
1

xα dx < ∞.
Step 2: Apply the substitution x= et . Let x= et , dx= et dt, and note that as x varies
from 0 to ∞, t varies from −∞ to ∞, and so

I =
∫

∞

0

1
xα +1

dx =
∫

∞

−∞

et

eαt +1
dt =

∫
∞

−∞

ex

eαx +1
dx,

where, for convenience, in the last integral we have used x as a variable of integration
instead of t. Identity (5.3.14) follows now from Example 5.3.6. �

The tricky part in Example 5.3.6 is
choosing the contour. Let us clarify
this part with one more example. For
instance, we compute the integral∫

∞

0

lnx
x4 +1

dx.

This integral is improper as the inter-
val of integration is infinite and the
integrand tends to −∞ as x ↓ 0. To
define the convergence of such inte-
grals, we follow the general proce-
dure of taking all one-sided limits one
at a time; see Figure 5.19. Thus

x

ln x
x
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Fig. 5.19 Splitting an improper in-
tegral.

∫
∞

0

lnx
x4 +1

dx = lim
ε↓0

∫ 1

ε

lnx
x4 +1

dx+ lim
b→∞

∫ b

1

lnx
x4 +1

dx.

It is not difficult to show that both limits exist and thus the integral converges. We
look at consider this integral in the next example.


