316 5 Residue Theory

There are interesting integrals of rational functions that are not computable using
semi-circular contours as in Example 5.3.3. One such integral is
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This integral can be reduced to an integral involving exponential functions, via the
substitution x = ¢’. We outline this useful technique in the following example.

Example 5.3.7. (The substitution x = ¢’) For o > 1 establish the identity
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Solution. Step 1: Show that the integral converges. The integrand is continuous, o)
it is enough to show that the integral converges on [1,c0). We have oo +1 < Xla, and

the integral is convergent since [;° X—adx < oo,
Step 2: Apply the substitution x = ¢’. Let x = ¢, dx = €' dt, and note that as x varies

from O to oo, ¢ varies from —oo to oo, and so
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where, for convenience, in the last integral we have used x as a variable of integration
instead of ¢. Identity (5.3.14) follows now from Example 5.3.6. (]

The tricky part in Example 5.3.6 is
choosing the contour. Let us clarify

Inx
this part with one more example. For I
instance, we compute the integral |
—dx.
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This integral is improper as the inter-
val of integration is infinite and the
integrand tends to —eo as x | 0. To -1
define the convergence of such inte-
grals, we follow the general proce-
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at a time; see Figure 5.19. Thus
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It is not difficult to show that both limits exist and thus the integral converges. We
leek-at consider this integral in the next example.



