and this z satisfies $|z|<1$ if $|w|<1$ and $|z|=1$ if $|w|=1$. This also proves (iv).
To prove (v) we use the quotient rule to write

$$
\phi_{a}^{\prime}(z)=\frac{(1-\bar{a} z)-(z-a)(-\bar{a})}{(1-\bar{a} z)^{2}}=\frac{1-|a|^{2}}{(1-\bar{a} z)^{2}}
$$

To prove (vi) we write

$$
\phi_{a}(c z)=\frac{c z-a}{1-\bar{a} c z}=\frac{c z-c \bar{c} a}{1-\bar{a} c z}=c \frac{z-a \bar{c}}{1-\bar{a} \bar{c} z}=c \phi_{a \bar{c}}(z) .
$$

Finally, (vii) is proved by a direct calculation as follows:

$$
\phi_{a} \circ \phi_{b}(z)=\frac{(1+a \bar{b}) z-(a+b)}{(1+\bar{a} b)-(\bar{a}+\bar{b}) z}=\frac{1+a \bar{b}}{1+\bar{a} b} \frac{z-\frac{a+b}{1+a \bar{b}}}{1-\frac{\bar{a}+\bar{b}}{1+\bar{a} b} z}=\frac{1+a \bar{b}}{1+\bar{a} b} \phi_{\frac{a+b}{1+a \bar{b}}}(z)
$$

Notice that the constant $\frac{1+a \bar{b}}{1+\bar{a} b}$ is unimodular and that $\frac{a+b}{1+a \bar{b}}=\phi_{-b}(a)$.
Let us examine how the properties of ϕ_{a} interplay with the maximum and minimum modulus principles. Clearly, ϕ_{a} is not constant, but we showed that $\left|\phi_{a}(z)\right|$ equals 1 on $C_{1}(0)$. Studying Corollary 3.9.10, we conclude that $\phi_{a}(z)$ must vanish somewhere inside the unit disk. This is certainly the case since $\phi_{a}(a)=0$; and in fact $z=a$ is the only zero of $\phi_{a}(z)$ inside the unit disk.

The Schwarz-Pick theorem

Let f be a map defined on the unit disc $B_{0}(1)$ that satisfies $|f(z)| \leq 1$ for all $|z|<1$. We cannot directly apply Schwarz's Lemma on f since we may not have $f(0)=0$. But we can compose f with two linear fractional transformations to achieve this.

Theorem 4.6.3. (Schwarz-Pick Theorem) Let f be an analytic function that maps the open unit disc $B_{1}(0)$ to the closed unit disk $\overline{B_{1}(0)}$. Then for a number a in the disc $B_{1}(0)$ we have

$$
\begin{equation*}
\left|\frac{f(z)-f(a)}{1-\overline{f(a)} f(z)}\right| \leq\left|\frac{z-a}{1-\bar{a} z}\right| \tag{4.6.5}
\end{equation*}
$$

and also

$$
\begin{equation*}
\left|f^{\prime}(a)\right| \leq \frac{1-|f(a)|^{2}}{1-|a|^{2}} \tag{4.6.6}
\end{equation*}
$$

Moreover, if equality holds in (4.6.5) for some $z \neq a$ or equality holds in (4.6.6), then f is equal to a unimodular constant times a Möbius transformation.

