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and this z satisfies |z] < 1 if |w| < 1 and |z| = 1 if |w| = 1. This also proves (iv).
To prove (v) we use the quotient rule to write
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To prove (vi) we write
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Finally, (vii) is proved by a direct calculation as follows:
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Notice that the constant %igi is unimodular and that 1“;’% =0 _(a). [ |

Let us examine how the properties of ¢, interplay with the maximum and min-
imum modulus principles. Clearly, ¢, is not constant, but we showed that |@,(z)|
equals 1 on C;(0). Studying Corollary 3.9.10, we conclude that ¢,(z) must vanish
somewhere inside the unit disk. This is certainly the case since ¢,(a) = 0; and in
fact z = a is the only zero of ¢,(z) inside the unit disk.

The Schwarz-Pick theorem

Let f be a map defined on the unit disc By(1) that satisfies |f(z)| < 1 forall |z]| < 1.
We cannot directly apply Schwarz’s Lemma on f since we may not have f(0) = 0.
But we can compose f with two linear fractional transformations to achieve this.

Theorem 4.6.3. (Schwarz-Pick Theorem) Let f be an analytic function that maps
the open unit disc B1(0) to the closed unit disk By (0). Then for a number a in the
disc B1(0) we have
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and also )
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Moreover, if equality holds in (4.6.5) for some 7 # a or equality holds in (4.6.6),
then f is equal to a unimodular constant times a Mobius transformation.





