Möbius Transformations on the Unit Disk

Maps of the form $\frac{a z+b}{c z+d}$ are called linear fractional transformations. We would like to study a class of linear fractional transformations from the open unit disk to itself of the form

$$
\begin{equation*}
\phi_{a}(z)=\frac{z-a}{1-\bar{a} z}, \quad|z| \leq 1 \tag{4.6.4}
\end{equation*}
$$

where a is a complex number with $|a|<1$. As the denominator in (4.6.4) never vanishes when $|z|<1$, we note that these maps are analytic on the unit disc. A map ϕ_{a} is called a Möbius transformation after the mathematician August Ferdinand Möbius (1790-1868).

Proposition 4.6.2. (Properties of Möbius Transformations) Let a, b be complex numbers with $|a|,|b|<1$. Then for all $|z|<1$ we have
(i) $\phi_{a}(0)=-a$ and $\phi_{a}(a)=0$.
(ii) ϕ_{a} is a one-to-one and onto map from $B_{1}(0)$ to $B_{1}(0)$.
(iii) ϕ_{a} is a one-to-one and onto map from $C_{1}(0)$ to $C_{1}(0)$.
(iv) $\phi_{a}^{-1}=\phi_{-a}$.
(v) $\phi_{a}^{\prime}(z)=\frac{1-|a|^{2}}{(1-\bar{a} z)^{2}}$.
(vi) $\phi_{a}(c z)=c \phi_{a \bar{c}}(z)$ where c is a complex number with $|c|=1$.
(vii) We have the identity

$$
\phi_{a} \circ \phi_{b}(z)=\frac{1+a \bar{b}}{1+\bar{a} b} \phi_{\frac{a+b}{1+a \bar{b}}}(z)=\frac{1+a \bar{b}}{1+\bar{a} b} \phi_{\phi_{-b}(a)}(z)
$$

Proof. Assertion (i) is trivial. To prove (ii) and (iii) notice that for θ real we have

$$
\left|\phi_{a}\left(e^{i \theta}\right)\right|=\left|\frac{e^{i \theta}-a}{1-\bar{a} e^{i \theta}}\right|=\left|\frac{1-a e^{-i \theta}}{1-\bar{a} e^{i \theta}}\right|=1 .
$$

This shows that ϕ_{a} maps $C_{1}(0)$ to $C_{1}(0)$. It follows that ϕ_{a} maps $B_{1}(0)$ to $B_{1}(0)$, otherwise it would achieve its maximum in the interior of $B_{1}(0)$, contradicting the maximum modulus principle (Theorem 3.9.6).

To prove the one-to-one assertion in (ii) and (iii) we assume $\frac{z-a}{1-\bar{a} z}=\frac{z^{\prime}-a}{1-\bar{a} z^{\prime}}$ and we show that $z=z^{\prime}$. Cross multiplying gives $(z-a)\left(1-\bar{a} z^{\prime}\right)=\left(z^{\prime}-a\right)(1-\bar{a} z)$ which implies $z-a-\bar{a} z^{\prime} z+|a|^{2} z^{\prime}=z^{\prime}-a-\bar{a} z z^{\prime}+|a|^{2} z$. This in turn implies $z-z^{\prime}=|a|^{2}\left(z-z^{\prime}\right)$, hence $\left(z-z^{\prime}\right)\left(1-|a|^{2}\right)=0$, and so $z=z^{\prime}$.

We prove the onto assertion in (ii) and (iii) by solving the equation $\frac{z-a}{1-\bar{a} z}=w$ in z for a given w in the unit disk or on the unit circle. Indeed, algebraic manipulations yield

$$
z=\frac{w+a}{1+\bar{a} w}=\phi_{-a}(w)
$$

