(d) If $f(0)=0$, show that $f(z)=a z^{n}$, where $n$ is the order of the zero at 0 . [Hint: Factor $z^{n}$ and apply (c) to the entire function $\frac{f(z)}{z^{n}}$.]

### 4.6 Schwarz's Lemma

In this section we put together some of the material we have developed to prove a very elegant and useful lemma attributed to Karl Hermann Amandus Schwarz (1843-1921). This lemma reflects the rigidity of analytic functions from the unit disk to itself and has remarkable applications.

Lemma 4.6.1. (Schwarz's Lemma) Suppose that $f$ is analytic on the open unit disk $B_{1}(0)$ with $f(0)=0$ and that $f$ takes values in the closed unit disk $\overline{B_{1}(0)}$, i.e., it satisfies $|f(z)| \leq 1$ for all $|z|<1$. Then we have

$$
\begin{equation*}
|f(z)| \leq|z| \quad \text { for all }|z|<1 \tag{4.6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(0)\right| \leq 1 \tag{4.6.2}
\end{equation*}
$$

Moreover, if either (a) equality holds in (4.6.1) for some $z \neq 0$ (i.e., there is a $z_{0} \neq 0$ with $\left|z_{0}\right|<1$ such that $\left.\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|\right)$ or (b) equality holds in (4.6.2), then there is a complex constant $A$ with $|A|=1$ such that

$$
f(z)=A z
$$

for all $|z|<1$.
Proof. Notice that $\lim _{w \rightarrow 0} \frac{f(w)}{w}=f^{\prime}(0)$. Consider the function

$$
g(w)= \begin{cases}\frac{f(w)}{w} & \text { if } w \neq 0  \tag{4.6.3}\\ f^{\prime}(0) & \text { if } w=0\end{cases}
$$

It follows from Theorem 4.5.12(iii) that $g$ has a removable singularity and hence is analytic on the open unit disk. Fix a point $z$ in $B_{1}(0)$ and let $R$ satisfy $|z|<R<1$. Then the function $g$ is analytic on the open disk $B_{R}(0)$ and is continuous on its boundary $C_{R}(0)$; moreover $|g(w)| \leq 1 / R$ on the circle $|w|=R$ in view of the fact that $|f(w)| \leq 1$ for all $w$ in $B_{1}(0)$. It follows from the maximum modulus principle (Theorem 3.9.6) that $|g(w)| \leq 1 / R$ for all $|w| \leq R$, in particular $|g(0)| \leq 1 / R$ and $|g(z)| \leq 1 / R$. Letting $R \uparrow 1$ we obtain $|g(0)| \leq 1$ and $|g(z)| \leq 1$. Recasting these in terms of $f$, we obtain $\left|f^{\prime}(0)\right| \leq 1$ and $|f(z)| \leq|z|$. Since $|z|<1$ was an arbitrary point in the unit disk, (4.6.1) and (4.6.2) hold.

Now suppose that equality holds in (4.6.1) for some $z=z_{0} \neq 0$ or equality holds in (4.6.2). Then $g$ attains its maximum in the interior of $B_{1}(0)$ and it must be equal to a constant $A$ by Theorem 3.9.6. Thus $f(w)=A w$ for all $|w|<1$. Since there is a $z_{0} \neq 0$ in $B_{1}(0)$ such that $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$ or $f^{\prime}(0)=1$, it follows that $|A|=1$.

