Theorem 4.5.15. Let $m \ge 1$ be an integer. Let R > 0 and suppose that f is analytic on the punctured disk $0 < |z - z_0| < R$. Then the following conditions are equivalent: (i) f has a pole of order m at z_0 .

(ii) There is an r > 0 and there is a nowhere vanishing analytic function ϕ on $B_r(z_0)$ such that

$$f(z) = \frac{\phi(z)}{(z - z_0)^m}$$
, when $0 < |z - z_0| < R$.

(iii) There exists a complex number $\alpha \neq 0$ such that

$$\lim_{z \to z_0} (z - z_0)^m f(z) = \alpha$$

(iv) There exist r > 0 and complex numbers a_n for $n \ge -m$ such that $a_{-m} \ne 0$ and

$$f(z) = \frac{a_{-m}}{(z-z_0)^m} + \frac{a_{-m+1}}{(z-z_0)^{m-1}} + \dots + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \dots$$

for all $z \in B_r(z_0) \setminus \{z_0\}$.

Proof. (*i*) \Rightarrow (*ii*). If *f* has a pole of order *m* at *z*₀, then the function *g* in (4.5.3) has a zero of order *m* at *z*₀. By Theorem 4.5.2, there is a nowhere vanishing function λ on a neighborhood $B_r(z_0)$ of *z*₀ such that $g(z) = (z - z_0)^m \lambda(z)$. This implies assertion (*ii*) with $\phi = 1/\lambda$.

 $(ii) \Rightarrow (iii)$. This is an easy consequence of the observation that $(z-z_0)^m f(z) = \phi(z)$ which converges to $\phi(z_0)$ as $z \to z_0$. Then $\alpha = \phi(z_0) \neq 0$ works.

 $(iii) \Rightarrow (iv)$. Using Theorem 4.5.12(iii) we deduce that z_0 is a removable singularity of $(z - z_0)^m f(z)$ on the annulus $|z - z_0| < r$. Expanding $q(z) = (z - z_0)^m f(z)$ in a power series centered at z_0 , we write

$$q(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, \quad |z - z_0| < r,$$
(4.5.4)

for some c_k with $c_0 = \alpha$. Dividing both sides of (4.5.4) by $(z - z_0)^m$ and using that $(z - z_0)^m f(z) = q(z)$ for $0 < |z - z_0| < r$, we obtain the claimed Laurent series of f. Note that $a_k = c_{k+m}$ for $k \ge -m$ and that $a_{-m} = \alpha \ne 0$.

 $(iv) \Rightarrow (i)$. Factoring $\frac{1}{(z-z_0)^m}$ from the Laurent series of f(z) in (iv) we write f(z) as

$$\frac{1}{(z-z_0)^m} \left[a_{-m} + a_{-m+1}(z-z_0) + \dots + a_{-1}(z-z_0)^{m-1} + a_0(z-z_0)^m + \dots \right]$$

and we note that the expression inside the square brackets is an analytic function on $|z - z_0| < r$. This function, which we call *h*, satisfies $h(z_0) = a_{-m} \neq 0$, thus there is a neighborhood $B_{\delta}(z_0)$ of z_0 on which it is nowhere vanishing. We have

$$\lim_{z \to z_0} |f(z)| = \lim_{z \to z_0} \frac{1}{|z - z_0|^m} \lim_{z \to z_0} |h(z)| = \mathbf{1} \cdots \mathbf{1} |a_{-m}| = \infty$$

280