Theorem 4.5.15. Let $m \geq 1$ be an integer. Let $R>0$ and suppose that f is analytic on the punctured disk $0<\left|z-z_{0}\right|<R$. Then the following conditions are equivalent: (i) f has a pole of order m at z_{0}.
(ii) There is an $r>0$ and there is a nowhere vanishing analytic function ϕ on $B_{r}\left(z_{0}\right)$ such that

$$
f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}, \quad \text { when } 0<\left|z-z_{0}\right|<R
$$

(iii) There exists a complex number $\alpha \neq 0$ such that

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{m} f(z)=\alpha
$$

(iv) There exist $r>0$ and complex numbers a_{n} for $n \geq-m$ such that $a_{-m} \neq 0$ and
$f(z)=\frac{a_{-m}}{\left(z-z_{0}\right)^{m}}+\frac{a_{-m+1}}{\left(z-z_{0}\right)^{m-1}}+\cdots+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots$
for all $z \in B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$.
Proof. $(i) \Rightarrow(i i)$. If f has a pole of order m at z_{0}, then the function g in (4.5.3) has a zero of order m at z_{0}. By Theorem 4.5.2, there is a nowhere vanishing function λ on a neighborhood $B_{r}\left(z_{0}\right)$ of z_{0} such that $g(z)=\left(z-z_{0}\right)^{m} \lambda(z)$. This implies assertion (ii) with $\phi=1 / \lambda$.
(ii) \Rightarrow (iii). This is an easy consequence of the observation that $\left(z-z_{0}\right)^{m} f(z)=\phi(z)$ which converges to $\phi\left(z_{0}\right)$ as $z \rightarrow z_{0}$. Then $\alpha=\phi\left(z_{0}\right) \neq 0$ works.
$(i i i) \Rightarrow(i v)$. Using Theorem 4.5.12(iii) we deduce that z_{0} is a removable singularity of $\left(z-z_{0}\right)^{m} f(z)$ on the annulus $\left|z-z_{0}\right|<r$. Expanding $q(z)=\left(z-z_{0}\right)^{m} f(z)$ in a power series centered at z_{0}, we write

$$
\begin{equation*}
q(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}, \quad\left|z-z_{0}\right|<r \tag{4.5.4}
\end{equation*}
$$

for some c_{k} with $c_{0}=\alpha$. Dividing both sides of (4.5.4) by $\left(z-z_{0}\right)^{m}$ and using that $\left(z-z_{0}\right)^{m} f(z)=q(z)$ for $0<\left|z-z_{0}\right|<r$, we obtain the claimed Laurent series of f. Note that $a_{k}=c_{k+m}$ for $k \geq-m$ and that $a_{-m}=\alpha \neq 0$.
$(i v) \Rightarrow(i)$. Factoring $\frac{1}{\left(z-z_{0}\right)^{m}}$ from the Laurent series of $f(z)$ in $(i v)$ we write $f(z)$ as

$$
\frac{1}{\left(z-z_{0}\right)^{m}}\left[a_{-m}+a_{-m+1}\left(z-z_{0}\right)+\cdots+a_{-1}\left(z-z_{0}\right)^{m-1}+a_{0}\left(z-z_{0}\right)^{m}+\cdots\right]
$$

and we note that the expression inside the square brackets is an analytic function on $\left|z-z_{0}\right|<r$. This function, which we call h, satisfies $h\left(z_{0}\right)=a_{-m} \neq 0$, thus there is a neighborhood $B_{\delta}\left(z_{0}\right)$ of z_{0} on which it is nowhere vanishing. We have

$$
\lim _{z \rightarrow z_{0}}|f(z)|=\lim _{z \rightarrow z_{0}} \frac{1}{\left|z-z_{0}\right|^{m}} \lim _{z \rightarrow z_{0}}|h(z)|=\infty \cdot\left|a_{-m}\right|=\infty
$$

