which converge uniformly on all closed subannuli of $A_{R_{1}, R_{2}}\left(z_{0}\right)$. Multiply both sides of the preceding identity by $\left(z-z_{0}\right)^{-k-1}$ for some arbitrary integer k and integrate over the circle $C_{R}\left(z_{0}\right)$. We obtain

$$
\frac{1}{2 \pi i} \int_{C_{R}\left(z_{0}\right)} \sum_{n \in \mathbb{Z}} a_{n}\left(z-z_{0}\right)^{n-k-1} d z=\frac{1}{2 \pi i} \int_{C_{R}\left(z_{0}\right)} \sum_{n \in \mathbb{Z}} b_{n}\left(z-z_{0}\right)^{n-k-1} d z
$$

But both series above converge uniformly on all closed annuli containing the circle $C_{R}\left(z_{0}\right)$ and contained in the annulus $A_{R_{1}, R_{2}}\left(z_{0}\right)$, so the integration and summation can be interchanged via by Corollary 4.1.6. We obtain

$$
\sum_{n \in \mathbb{Z}} \frac{1}{2 \pi i} \int_{C_{R}\left(z_{0}\right)} a_{n}\left(z-z_{0}\right)^{n-k-1} d z=\sum_{n \in \mathbb{Z}} \frac{1}{2 \pi i} \int_{C_{R}\left(z_{0}\right)} b_{n}\left(z-z_{0}\right)^{n-k-1} d z
$$

and noting that all terms of the series vanish except for the terms with $n=k$, in view of the identity

$$
\frac{1}{2 \pi i} \int_{C_{R}\left(z_{0}\right)}\left(z-z_{0}\right)^{-1} d z=1
$$

we deduce that $a_{k}=b_{k}$ for all k.
As with power series, often in computing Laurent series, we can avoid using (4.4.2) by resorting to known series.

Example 4.4.2. (Laurent series centered at 0) The function $e^{\frac{1}{z}}$ is analytic in the (degenerated) annulus $0<|z|$, with center at $z_{0}=0$. Find its Laurent series expansions in this annulus.
Solution. Start with the exponential series $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$, which is valid for all z. In particular, if $z \neq 0$, putting $\frac{1}{z}$ into this series, we obtain

$$
e^{\frac{1}{z}}=\sum_{n=0}^{\infty} \frac{1}{n!z^{n}}=1+\sum_{n=1}^{\infty} \frac{1}{n!z^{n}}=1+\frac{1}{1!z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{3}}+\cdots
$$

By the uniqueness of the Laurent series representation in the annulus $0<|z|$, we have thus found the Laurent series of $e^{\frac{1}{z}}$ in the annulus $0<|z|$. Note that the series has infinitely many negative powers of z.

Example 4.4.3. (Laurent series centered at 0) The function $\frac{1}{1-z}$ is analytic in the annulus $1<|z|$, with center at $z_{0}=0$. Find its Laurent series expansions in this annulus.
Solution. Here we use the geometric series $\sum_{n=0}^{\infty} w^{n}=\frac{1}{1-w}$ for $|w|<1$. Factor z from the denominator and use the fact that $1<|z|$, then

$$
\frac{1}{1-z}=\frac{1}{z} \frac{1}{\frac{1}{z}-1}=\frac{-1}{z} \frac{1}{1-\frac{1}{z}}=\frac{-1}{z} \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}=\sum_{n=0}^{\infty} \frac{-1}{z^{n+1}}, \quad 1<|z| .
$$

