264 4 Series of Analytic Functions and Singularities

which converge uniformly on all closed subannuli of Ag, &, (z0). Multiply both sides
of the preceding identity by (z —z9) *~! for some arbitrary integer k and integrate
over the circle Cg(zo). We obtain
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But both series above converge uniformly on all closed annuli containing the circle
Cr(z0) and contained in the annulus Ag, &, (o), so the integration and summation
can be interchanged via by Corollary 4.1.6. We obtain
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and noting that all terms of the series vanish except for the terms with n =k, in view

of the identity
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we deduce that a; = by for all k. |

As with power series, often in computing Laurent series, we can avoid using
(4.4.2) by resorting to known series.
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Example 4.4.2. (Laurent series centered at 0) The function ez is analytic in the
(degenerated) annulus 0 < |z|, with center at zop = 0. Find its Laurent series expan-
sions in this annulus.

Solution. Start with the exponential series e = Y. %7, which is valid for all z. In

particular, if z # 0, putting % into this series, we obtain
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By the uniqueness of the Laurent series representation in the annulus 0 < |z|, we
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have thus found the Laurent series of ez in the annulus 0 < |z|. Note that the series
has infinitely many negative powers of z. (|

Example 4.4.3. (Laurent series centered at 0) The function l%z is analytic in the

annulus 1 < |z], with center at zop = 0. Find its Laurent series expansions in this
annulus.

Solution. Here we use the geometric series ¥;” ow" = - for |w| < 1. Factor z
from the denominator and use the fact that 1 < |z|, then
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