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By the uniqueness of the power series expansion, (4.3.9) implies that c1 = 1, and
cn = 0 for all n≥ 2. Thus,
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Changing n to n+1 in the last identity, we see that, for n≥ 1,
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Now, realizing that
(
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= n+1, we deduce (4.3.8).

(d) With the aid of a computer and the recurrence relation (4.3.8) we generated the
Bernoulli numbers shown in Table 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
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Table 2. Bernoulli numbers.

(e) As the table suggests, B2n+1 = 0 for n ≥ 1. This is clearly a fact about an even
function. Consider f (z)−B1z, i.e., eliminate the linear term of the Maclaurin series:
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. (4.3.10)

This is an even function. Hence all the odd numbered coefficients in its Maclaurin
series are zero (Exercise 29). This implies that B2n+1 = 0 for all n≥ 1. �

Using (4.3.10) and the Maclaurin series of z
ez−1 , we see that for |z|< 2π


