$$
\begin{aligned}
c_{n} & =\sum_{k=0}^{n-1} \frac{B_{k}}{k!} \frac{1}{(n-k)!} \quad\left(\text { because } a_{0}=0\right) \\
& =\frac{1}{n!} \sum_{k=0}^{n-1} \frac{n!}{k!(n-k)!} B_{k}=\frac{1}{n!} \sum_{k=0}^{n-1}\binom{n}{k} B_{k} .
\end{aligned}
$$

By the uniqueness of the power series expansion, (4.3.9) implies that $c_{1}=1$, and $c_{n}=0$ for all $n \geq 2$. Thus,

$$
\begin{aligned}
& c_{1}=1 \quad \Rightarrow \quad \frac{1}{1!} B_{0}=1 \quad \Rightarrow \quad B_{0}=1 \\
& c_{n}=0, \quad n \geq 2 \quad \Rightarrow \quad \frac{1}{n!} \sum_{k=0}^{n-1}\binom{n}{k} B_{k}=0, \quad n \geq 2
\end{aligned}
$$

Changing n to $n+1$ in the last identity, we see that, for $n \geq 1$,

$$
\frac{1}{(n+1)!} \sum_{k=0}^{n}\binom{n+1}{k} B_{k}=0
$$

which implies that

$$
\frac{1}{(n+1)!} \sum_{k=0}^{n-1}\binom{n+1}{k} B_{k}+\frac{1}{(n+1)!}\binom{n+1}{n} B_{n}=0 .
$$

Now, realizing that $\binom{n+1}{n}=n+1$, we deduce (4.3.8).
(d) With the aid of a computer and the recurrence relation (4.3.8) we generated the Bernoulli numbers shown in Table 2.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
B_{n}	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0	$-\frac{1}{30}$	0	$\frac{5}{66}$	0	$-\frac{691}{2730}$

Table 2. Bernoulli numbers.
(e) As the table suggests, $B_{2 n+1}=0$ for $n \geq 1$. This is clearly a fact about an even function. Consider $f(z)-B_{1} z$, i.e., eliminate the linear term of the Maclaurin series:

$$
\begin{equation*}
\frac{z}{e^{z}-1}+\frac{z}{2}=\frac{z+z e^{z}}{2\left(e^{z}-1\right)}=\frac{z\left(e^{\frac{z}{2}}+e^{-\frac{z}{2}}\right)}{2\left(e^{\frac{z}{2}}-e^{-\frac{z}{2}}\right)}=\frac{z}{2} \operatorname{coth}\left(\frac{z}{2}\right) \tag{4.3.10}
\end{equation*}
$$

This is an even function. Hence all the odd numbered coefficients in its Maclaurin series are zero (Exercise 29). This implies that $B_{2 n+1}=0$ for all $n \geq 1$.

Using (4.3.10) and the Maclaurin series of $\frac{z}{e^{z}-1}$, we see that for $|z|<2 \pi$

