Example 4.3.12. (Bernoulli numbers) Let $f(z)=\frac{z}{e^{z}-1}, z \neq 0, f(0)=1$.
(a) Show that f is analytic at 0 .
(b) By Theorem 4.3.1, f has a Maclaurin series expansion. Show that its radius of convergence is $R=2 \pi$.
(c) Write the Maclaurin series in the form

$$
f(z)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}, \quad|z|<2 \pi
$$

The number B_{n} is called the nth Bernoulli number. Show that $B_{0}=1$, and derive the recurrence relation

$$
\begin{equation*}
B_{n}=-\frac{1}{n+1} \sum_{k=0}^{n-1}\binom{n+1}{k} B_{k}, \quad n \geq 1 \tag{4.3.8}
\end{equation*}
$$

(d) Find $B_{0}, B_{1}, B_{2}, \ldots, B_{12}$, with the help of the recursion formula and a calculator.
(e) Show that $B_{2 n+1}=0$ for $n \geq 1$. Here $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the binomial coefficient.

Solution. (a) Consider $g(z)=\frac{1}{f(z)}=\frac{e^{z}-1}{z}$ for $z \neq 0$, and $g(0)=1$. By Theorem 4.3.11, g is analytic at 0 . Since $g(0) \neq 0, \frac{1}{g}=f$ is therefore analytic at $z=0$.
(b) The Maclaurin series of f converges in the largest disk around $z_{0}=0$ on which f is defined and is analytic. Away from zero, f is analytic on the set where $e^{z}-1 \neq 0$. Since $e^{z}=1$ precisely when z is an integer multiple of $2 \pi i$, we see that the Maclaurin series converges for all $|z|<2 \pi$, and the radius of convergence is 2π.

Fig. 4.8 The disk of convergence of $\frac{z}{e^{z}-1}$.
(c) Multiplying both sides of the Maclaurin series expansion of $\frac{z}{e^{z}-1}$ by $e^{z}-1$ and using the Maclaurin series $e^{z}-1=z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots=\sum_{n=1}^{\infty} \frac{z^{n}}{n!}$, we obtain

$$
\begin{equation*}
z=\left(e^{z}-1\right) \sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}=\sum_{n=1}^{\infty} \overbrace{\frac{z^{n}}{n!}}^{a_{n} z^{n}} \sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}=\sum_{n=1}^{\infty} c_{n} z^{n}, \quad|z|<2 \pi, \tag{4.3.9}
\end{equation*}
$$

where c_{n} will be computed from the Cauchy product formula (Theorem 1.5.28). Note that because we are multiplying by the power series of $e^{z}-1$ whose first term is z, the first term in the Cauchy product will have degree greater than or equal to 1 (thus $c_{0}=0$). We have for each $n \geq 1$

