4 Series of Analytic Functions and Singularities

$$\left|(z-z_0)^n \frac{f(\zeta)}{(\zeta-z_0)^{n+1}}\right| \leq M \frac{\rho^n}{r^{n+1}} = \frac{M}{r} \left(\frac{\rho}{r}\right)^n = M_n.$$

Since $\rho/r < 1$, the series $\sum M_n$ converges and it follows from the Weierstrass *M*-test that the series

$$\frac{f(\zeta)}{\zeta - z} = \sum_{n=0}^{\infty} (z - z_0)^n \frac{f(\zeta)}{(\zeta - z_0)^{n+1}}$$

converges uniformly for all ζ on $C_r(z_0)$. Integrating term by term both sides of the equality

$$\frac{1}{2\pi i} \frac{f(\zeta)}{\zeta - z} = \frac{1}{2\pi i} \sum_{n=0}^{\infty} (z - z_0)^n \frac{f(\zeta)}{(\zeta - z_0)^{n+1}}$$

and using Cauchy's generalized integral formula, we deduce

$$f(z) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

= $\sum_{n=0}^{\infty} (z - z_0)^n \underbrace{\frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta}_{n!}$
= $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n,$

which completes the first part of the proof. The uniqueness of the power series is a consequence of Theorem 4.2.10.

Remark 4.3.3. Since there is no guarantee that Ω is the largest region on which the function f in Theorem 4.3.1 is defined, the series (4.3.2) may converge on an open disk $B_{R_1}(z_0)$ larger than $B_R(z_0)$. Since a Taylor series is a power series, it follows from Theorem 4.2.5(*iii*) that the series (4.3.2) converges to f(z) absolutely on $B_{R_1}(z_0)$ and uniformly on all closed subdisks of $B_R(z_0)$ (in fact all closed subdisks of $B_{R_1}(z_0)$). Also, in view of Corollary 4.2.9, the series may be differentiated term-by-term in $B_R(z_0)$ as many times as we wish. This yields the Taylor series representation of the *n*th derivative

$$f^{(n)}(z) = \sum_{j=n}^{\infty} \frac{f^{(j)}(z_0)}{(j-n)!} (z-z_0)^{j-n}, \qquad |z-z_0| < R.$$
(4.3.4)

Example 4.3.4. (Maclaurin series of e^z , $\cos z$, and $\sin z$) Find the Maclaurin series expansions of (a) e^z , (b) $\cos z$, (c) $\sin z$.

Solution. We first note that all three functions are entire, so the Maclaurin series will converge for all *z*; that is, $R = \infty$ in all three cases.

248