$$
\begin{equation*}
c_{k}=\frac{f^{(k)}\left(z_{0}\right)}{k!} \quad(k=0,1,2, \ldots) \tag{4.2.7}
\end{equation*}
$$

with the usual convention: $f^{(0)}(z)=f(z)$ and $0!=1$. This formula relates the coefficients of the power series to the derivatives of f at the center of the series and is known as the Taylor formula. A consequence of this formula is the following useful result.

Theorem 4.2.10. (Uniqueness of Power Series Expansions) Let $R>0$. If for all z satisfying $\left|z-z_{0}\right|<R$ we have

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}
$$

then $a_{n}=b_{n}$ for all n. In particular, if $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}=0$ for all $\left|z-z_{0}\right|<R$, then $c_{n}=0$ for all $n=0,1,2, \ldots$.

Proof. By Taylor's formula, we have $a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}=b_{n}$. The second assertion of the theorem follows by seting $b_{n}=0$.

Power series can be integrated term-by-term over paths contained in their disk of convergence.

Example 4.2.11. (Term-by-term integration) Start with the geometric series

$$
\frac{1}{1+\zeta}=\sum_{n=0}^{\infty}(-1)^{n} \zeta^{n} \quad|\zeta|<1
$$

Since the integral of an analytic function on a disk is independent of path, integrating both sides from 0 to z, where $|z|<1$, we obtain

$$
\int_{[0, z]} \frac{1}{1+\zeta} d \zeta=\sum_{n=0}^{\infty}(-1)^{n} \int_{[0, z]} \zeta^{n} d \zeta
$$

Using the independence of paths (Theorem 3.3.4) and the fact that $\frac{d}{d z} \log (1+z)=$ $\frac{1}{1+z}$ and $\log 1=0$, we obtain

$$
\log (1+z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n+1}}{n+1} \quad|z|<1
$$

Example 4.2.12. (Term-by-term differentiation) Find the sum $\sum_{n=1}^{\infty} n z^{n}$ and determine its radius of convergence.
Solution. The series looks like the derivative of the geometric series

