Thus

$$\max |f_n(z)g(z) - f(z)g(z)| \le M \max |f_n(z) - f(z)| \to 0,$$

because f_n converges uniformly to f on E. Thus $f_ng \to fg$ uniformly on E. To prove (*ii*), apply (*i*) to the sequence of partial sums $u_1 + \cdots + u_n$ which converges uniformly to u.

Proof (Theorem 4.1.10). (i) The function f is continuous by Theorem 4.1.3(i). To prove that f is analytic, we apply Morera's theorem (Theorem 3.8.10). Let γ be an arbitrary closed triangular path lying in a closed disk in Ω . It is enough to show that $\int_{\gamma} f(z) dz = 0$. We have $\int_{\gamma} f_n(z) dz = 0$ for all n, by Cauchy's theorem (Theorem 3.5.4), because f_n is analytic inside and on γ ; and by Theorem 4.1.5, $\int_{\gamma} f_n(z) dz \to \int_{\gamma} f(z) dz$ as $n \to \infty$. So $\int_{\gamma} f(z) dz = 0$ and (i) follows.

(*ii*) Let $z_0 \in \Omega$ and let $\overline{B_R(z_0)}$ be a closed disk contained in Ω , centered at z_0 with radius R > 0, with positively oriented boundary $C_R(z_0)$. Since $f_n \to f$ uniformly on $C_R(z_0)$ and $\frac{1}{(z-z_0)^{k+1}}$ is continuous on $C_R(z_0)$, it follows from Lemma 4.1.11(*i*) that

$$\frac{f_n(z)}{(z-z_0)^{k+1}} \to \frac{f(z)}{(z-z_0)^{k+1}}$$

uniformly for all z on $C_R(z_0)$. Applying Theorem 4.1.5 and using the generalized Cauchy integral formula, we deduce

$$f_n^{(k)}(z_0) = \frac{k!}{2\pi i} \int_{C_R(z_0)} \frac{f_n(z)}{(z-z_0)^{k+1}} dz \to \frac{k!}{2\pi i} \int_{C_R(z_0)} \frac{f(z)}{(z-z_0)^{k+1}} dz = f^{(k)}(z_0),$$

which proves (ii).

Theorem 4.1.10 may fail if we replace analytic functions by differentiable functions of a real variable. That is, if *E* is a subset of the real line and $f_n(x) \to f(x)$ uniformly on *E*, it does not follow in general that f'_n converges to f', as the next example shows.

Example 4.1.12. (Failure of termwise differentiation) For $0 \le x \le 2\pi$ and n = 1, 2, ... define $f_n(x) = \frac{e^{inx}}{in}$. It is clear that $f_n \to 0$ uniformly on $[0, 2\pi]$. But $f'_n(x) = e^{inx}$ and this sequence does not converge except at x = 0 or $x = 2\pi$. (See Example 1.5.9) Consequently, f'_n does not converge to 0. Can we understand how this occurs within the larger framework of complex functions? Replace *x* by *z* and consider the sequence functions $f_n(z) = \frac{e^{inz}}{in}$. We cannot find a complex neighborhood of the real interval $[0, 2\pi]$ where f_n converges, as such a neighborhood would contain *z* with Im z < 0. Thus Theorem 4.1.10 does not apply.

Corollary 4.1.13. Suppose that $\{u_n\}_{n=1}^{\infty}$ is a sequence of analytic functions on a region Ω and that $u = \sum_{n=1}^{\infty} u_n$ converges uniformly on every closed disk in Ω . Then u is analytic on Ω . Moreover, for all integers $k \ge 1$, the series may be differentiated term by term k times to yield

234