is near c and so it is bounded. For $|z| \le M$, |f| is bounded because it is a continuous function on a closed and bounded set.]

15. Suppose that f is entire and $\lim_{z\to\infty} f(z) = 0$. Show that f is identically 0.

16. (a) Suppose that *f* is entire and *f'* is bounded in \mathbb{C} . Show that f(z) = az + b for all $z \in \mathbb{C}$. (b) Show that if *f* is entire and $f^{(n)}$ is bounded, then *f* is a polynomial of degree at most *n*.

17. Suppose that *f* is entire and omits an a nonempty open set, i.e., there is an open disk $B_R(w_0)$ with R > 0 in the *w*-plane such that f(z) does not lie in $B_R(w_0)$ for all *z*. Show that *f* is constant. [Hint: Consider $g(z) = \frac{1}{f(z) - w_0}$ and show that you can apply Liouville's theorem.] (A deep result in complex analysis known as Picard's theorem asserts that an entire nonconstant function can omit at most one value.)

18. Suppose that f is entire. Show that if either Re f or Im f are bounded, then f is constant. [Hint: Use Exercise 17.]

19. Suppose that f is entire and $\lim_{z\to\infty} f(z)/z = 0$. Show that f is constant. [Hint: Use Cauchy's estimate to show that f'(z) = 0.]

20. Suppose that *f* is entire and $\lim_{z\to\infty} \frac{f(z)}{z} = c$, where *c* is a constant. Show that f(z) = cz + b. [Hint: Apply the result of the previous exercise g(z) = f(z) - cz.]

21. A function f(z) = f(x + iy) is called **doubly periodic** if there are real numbers $T_1 > 0$ and $T_2 > 0$ such that $f(x+T_1+iy) = f(x+i(y+T_2)) = f(x+iy)$ for all z = x+iy in \mathbb{C} . Show that if a function is entire and doubly periodic then it is constant. Can an entire function *f* be periodic in one of *x* or *y* without being constant?

22. What conclusion do you draw from Corollary 3.9.3 about the function e^{z^2} ?

23. (a) Suppose that f is analytic in a bounded region Ω and continuous on the boundary of Ω . Suppose that |f| is constant on the boundary of Ω . Show that either f has a zero in Ω or f is constant in Ω .

(b) Find all analytic functions f on the unit disk such that |z| < |f(z)| for all |z| < 1 and |f(z)| = 1 for all |z| = 1. Justify your answer.

24. Let *f* and *g* be analytic functions on the open unit disk $B_1(0)$ and continuous and nonvanishing on the closed disk $\overline{B_1(0)}$. Suppose that |f(z)| = |g(z)| for all |z| = 1. Show that f(z) = Ag(z) for all $|z| \le 1$, where *A* is a constant such that |A| = 1.

25. Suppose that *f* is analytic on |z| < 1 and continuous on $|z| \le 1$. Suppose that f(z) is real-valued for all |z| = 1. Show that *f* is constant for all $|z| \le 1$. [Hint: Consider $g(z) = e^{if(z)}$.]

26. Suppose that *f* and *g* are analytic in a bounded region Ω and continuous on the boundary of Ω . Suppose that *g* does not vanish in $\overline{\Omega}$ and $|f(z)| \le |g(z)|$ for all *z* on the boundary of Ω . Show that $|f(z)| \le |g(z)|$ for all *z* in Ω .

226