is near c and so it is bounded. For $|z| \leq M,|f|$ is bounded because it is a continuous function on a closed and bounded set.]
15. Suppose that f is entire and $\lim _{z \rightarrow \infty} f(z)=0$. Show that f is identically 0 .
16. (a) Suppose that f is entire and f^{\prime} is bounded in \mathbb{C}. Show that $f(z)=a z+b$ for all $z \in \mathbb{C}$.
(b) Show that if f is entire and $f^{(n)}$ is bounded, then f is a polynomial of degree at most n.
17. Suppose that f is entire and omits an a nonempty open set, i.e., there is an open disk $B_{R}\left(w_{0}\right)$ with $R>0$ in the w-plane such that $f(z)$ does not lie in $B_{R}\left(w_{0}\right)$ for all z. Show that f is constant. [Hint: Consider $g(z)=\frac{1}{f(z)-w_{0}}$ and show that you can apply Liouville's theorem.] (A deep result in complex analysis known as Picard's theorem asserts that an entire nonconstant function can omit at most one value.)
18. Suppose that f is entire. Show that if either $\operatorname{Re} f$ or $\operatorname{Im} f$ are bounded, then f is constant. [Hint: Use Exercise 17.]
19. Suppose that f is entire and $\lim _{z \rightarrow \infty} f(z) / z=0$. Show that f is constant. [Hint: Use Cauchy's estimate to show that $f^{\prime}(z)=0$.]
20. Suppose that f is entire and $\lim _{z \rightarrow \infty} \frac{f(z)}{z}=c$, where c is a constant. Show that $f(z)=c z+b$. [Hint: Apply the result of the previous exercise $g(z)=f(z)-c z$.]
21. A function $f(z)=f(x+i y)$ is called doubly periodic if there are real numbers $T_{1}>0$ and $T_{2}>0$ such that $f\left(x+T_{1}+i y\right)=f\left(x+i\left(y+T_{2}\right)\right)=f(x+i y)$ for all $z=x+i y$ in \mathbb{C}. Show that if a function is entire and doubly periodic then it is constant. Can an entire function f be periodic in one of x or y without being constant?
22. What conclusion do you draw from Corollary 3.9.3 about the function $e^{z^{2}}$?
23. (a) Suppose that f is analytic in a bounded region Ω and continuous on the boundary of Ω. Suppose that $|f|$ is constant on the boundary of Ω. Show that either f has a zero in Ω or f is constant in Ω.
(b) Find all analytic functions f on the unit disk such that $|z|<|f(z)|$ for all $|z|<1$ and $|f(z)|=1$ for all $|z|=1$. Justify your answer.
24. Let f and g be analytic functions on the open unit disk $B_{1}(0)$ and continuous and nonvanishing on the closed disk $\overline{B_{1}(0)}$. Suppose that $|f(z)|=|g(z)|$ for all $|z|=1$. Show that $f(z)=A g(z)$ for all $|z| \leq 1$, where A is a constant such that $|A|=1$.
25. Suppose that f is analytic on $|z|<1$ and continuous on $|z| \leq 1$. Suppose that $f(z)$ is real-valued for all $|z|=1$. Show that f is constant for all $|z| \leq 1$. [Hint: Consider $g(z)=e^{i f(z)}$.]
26. Suppose that f and g are analytic in a bounded region Ω and continuous on the boundary of Ω. Suppose that g does not vanish in $\bar{\Omega}$ and $|f(z)| \leq|g(z)|$ for all z on the boundary of Ω. Show that $|f(z)| \leq|g(z)|$ for all z in Ω.

