Clearly, $\Omega = \Omega_0 \cup \Omega_1$, and Ω_0 and Ω_1 are disjoint, and Ω_1 is nonempty because |f| is assumed to attain its maximum in Ω . The set Ω_0 is open because |f| is continuous (Exercise 41, Section 2.2). If we show that Ω_1 is also open, then, as Ω is open and connected, it cannot be written as the union of two disjoint open nonempty sets (Proposition 2.1.7). This will force Ω_0 to be empty. Consequently, $\Omega = \Omega_1$, implying that |f| = M is constant in Ω .

So let us prove that Ω_1 is open. Pick zin Ω_1 . Since Ω is open, we can find an open disk $B_{\delta}(z)$ in Ω , centered at z with radius $\delta > 0$. We will show that $B_{\delta}(z)$ is contained in Ω_1 . This will imply that Ω_1 is open. Let $0 < r < \delta$ as shown in Figure 3.80. Using (3.9.5) and the fact that |f(z)| = M, we obtain

Fig. 3.80 We have that $B_r(z) \subset B_{\delta}(z) \subset \Omega$.

$$M = |f(z)| \le \frac{1}{2\pi} \int_0^{2\pi} \underbrace{|f(z + re^{it})|}_{dt} dt \le \frac{1}{2\pi} \int_0^{2\pi} M dt = M.$$

Hence

$$\frac{1}{2\pi}\int_0^{2\pi} \left| f(z+re^{it}) \right| dt = M,$$

and Lemma 3.9.5(ii) implies that

$$\left|f(z+re^{it})\right|=M$$

for all *t* in $[0, 2\pi]$. This shows that $C_r(z)$, the circle of radius *r* and center at *z*, is contained in Ω_1 . But this is true for all *r* satisfying $0 < r < \delta$, and this implies that $B_{\delta}(z)$ is contained in Ω_1 .

Suppose that f is analytic in Ω and continuous on the boundary of Ω . By Theorem 3.9.6, |f| cannot attain its maximum inside Ω unless f is constant. This leads us to the following two questions.

- Does |f| attain its maximum on the boundary of Ω ?
- If $|f(z)| \le M$ on the boundary of Ω , can we infer that $|f(z)| \le M$ for all z in Ω ?

The next example shows that in general the answers to both questions are negative.

Example 3.9.7. (The maximum modulus principle on an unbounded region)

Let $\Omega = \{z : \text{Re } z > 0, \text{ Im } z > 0\}$ be the first quadrant, bounded by the semiinfinite nonnegative *x* and *y*-axes.