The following lemma about real-valued functions states an obvious fact: If the values of a function are less than or equal to some constant M and if the average of the function is equal to M, then the function must be identically equal to M.

Lemma 3.9.5. (i) Suppose that h is a continuous real-valued function such that $h(t) \geq 0$ for all t in $[a, b](a<b)$. If

$$
\int_{a}^{b} h(t) d t=0
$$

then $h(t)=0$ for all t in $[a, b]$.
(ii) Suppose that h is a continuous real-valued function such that $h(t) \leq M$ (alternatively, $h(t) \geq M)$ for all t in $[a, b]$. If

$$
\frac{1}{b-a} \int_{a}^{b} h(t) d t=M
$$

then $h(t)=M$ for all t in $[a, b]$.
Proof. (i) The proof is by contradiction. Assume that $h\left(t_{0}\right)=\delta>0$ for some t_{0} in (a, b). Since h is continuous, we can find an interval (c, d) that contains t_{0} with $(c, d) \subset(a, b)$ and $h(t)>\delta / 2$ for all t in (c, d). Since the integral of a nonnegative function increases if we increase the interval of integration, we conclude that

$$
\int_{a}^{b} h(t) d t \geq \int_{c}^{d} h(t) d t \geq \frac{\delta}{2}(d-c)>0
$$

which is a contradiction. Hence $h(t)=0$ for all t in (a, b) and, by continuity of h, h is also 0 at the endpoints a and b.
(ii) We consider the case $h \leq M$ only as the other case is similar. Let $k=M-h$. Then k is a continuous and nonnegative function. Note that

$$
\int_{a}^{b} k(t) d t=0 \Leftrightarrow \frac{1}{b-a} \int_{a}^{b}(M-h(t)) d t=0 \Leftrightarrow \frac{1}{b-a} \int_{a}^{b} h(t) d t=M
$$

As the last equation holds, k must have vanishing integral, and from part (i) it follows that k is identically equal to zero; thus h is identically equal to M.

Theorem 3.9.6. (Maximum Modulus Principle) Suppose that f is analytic on a region Ω. If $|f|$ attains a maximum in Ω, then f is constant in Ω.

Proof. The connectedness property of Ω is crucial in the proof. Suppose that $|f|$ attains a maximum in Ω. If we show that $|f|$ is constant, then by Exercise 36 , Section 2.5, it will follow that f is constant. Let $M=\max _{z \in \Omega}|f(z)|$,

$$
\begin{aligned}
\Omega_{0} & =\{z \in \Omega:|f(z)|<M\} \\
\Omega_{1} & =\{z \in \Omega:|f(z)|=M\} .
\end{aligned}
$$

