3.8 Cauchy Integral Formula

$$\left|\frac{\phi(z,\zeta) - \phi(z_0,\zeta)}{z - z_0} - \frac{d\phi}{dz}(z_0,\zeta)\right| \le 2M \frac{|z - z_0|}{R^2}.$$
 (3.8.9)

Integrating the expression inside the absolute value on the left in (3.8.9) and using (3.8.7) we find

$$\begin{aligned} \left| \frac{g(z) - g(z_0)}{z - z_0} - \int_C \frac{d\phi}{dz}(z_0, \zeta) d\zeta \right| &= \left| \frac{\int_C [\phi(z, \zeta) - \phi(z_0, \zeta)] d\zeta}{z - z_0} - \int_C \frac{d\phi}{dz}(z_0, \zeta) d\zeta \right| \\ &= \left| \int_C \left[\frac{\phi(z, \zeta) - \phi(z_0, \zeta)}{z - z_0} - \frac{d}{dz}\phi(z_0, \zeta) \right] d\zeta \right| \\ &\leq \ell(C) 2M \frac{|z - z_0|}{R^2}, \end{aligned}$$

where we have used the *ML*-inequality and (3.8.9). As $z \rightarrow z_0$, the difference quotient on the left side of the inequality approaches $g'(z_0)$, while the right side of the inequality tends to 0. This proves (3.8.8).

Generalized Cauchy Integral Formula

We now use Theorem 3.8.5 to deduce the generalized Cauchy integral formula.

Theorem 3.8.6. (Generalized Cauchy Integral Formula) Suppose that f is analytic on a region Ω that contains a positively oriented simple closed path C and its interior. Then f has derivatives of any order at all points z in the interior of C given by

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta.$$
 (3.8.10)

Proof. When n = 0, $f^{(0)} = f$ and 0! = 1; in this case identity (3.8.10) was proved in Theorem 3.8.1. Let *U* be the interior of *C*. Assuming by induction that (3.8.10) holds for a natural number *n*, for $z \in U$ and $\zeta \in C$ define

$$\phi(z,\zeta) = \frac{n!}{2\pi i} \frac{f(\zeta)}{(\zeta-z)^{n+1}},$$

and note that $\phi(z, \zeta)$ is analytic in z in U and continuous in $\zeta \in C$. Moreover, for $z \in U$ we have

$$\frac{d\phi}{dz}(z,\zeta) = \frac{(n+1)!}{2\pi i} \frac{f(\zeta)}{(\zeta-z)^{n+2}},$$

which is continuous in $\zeta \in C$. Applying Theorem 3.8.5 we obtain that $f^{(n+1)}$ is analytic in U and

$$f^{(n+1)}(z) = \frac{(n+1)!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+2}} d\zeta$$

213