
3.8 Cauchy Integral Formula 213∣∣∣∣φ(z,ζ )−φ(z0,ζ )

z− z0
− dφ

dz
(z0,ζ )

∣∣∣∣≤ 2M
|z− z0|

R2 . (3.8.9)

Integrating the expression inside the absolute value on the left in (3.8.9) and using
(3.8.7) we find
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where we have used the ML-inequality and (3.8.9). As z → z0, the difference quo-
tient on the left side of the inequality approaches g′(z0), while the right side of the
inequality tends to 0. This proves (3.8.8). ■

Generalized Cauchy Integral Formula

We now use Theorem 3.8.5 to deduce the generalized Cauchy integral formula.

Theorem 3.8.6. (Generalized Cauchy Integral Formula) Suppose that f is ana-
lytic on a region Ω that contains a positively oriented simple closed path C and its
interior. Then f has derivatives of any order at all points z in the interior of C given
by
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Proof. When n = 0, f (0) = f and 0! = 1; in this case identity (3.8.10) was proved
in Theorem 3.8.1. Let U be the interior of C. Assuming by induction that (3.8.10)
holds for a natural number n, for z ∈U and ζ ∈C define
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and note that φ(z,ζ ) is analytic in z in U and continuous in ζ ∈ C. Moreover, for
z ∈U we have
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which is continuous in ζ ∈ C. Applying Theorem 3.8.5 we obtain that f (n+1) is
analytic in U and
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