212 3 Complex Integration

Proof. Using (3.8.1), for 0 < |z —zo| < g, we write
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Combining these integrals and simplifying, we obtain
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For { on Cg(z0) and 0 < |z—z0| < & we have |{ —z| > &, and so \C 7 < 2. Thus
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It follows from the ML-inequality that
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Separating the integrals and using identity (3.8.5) we obtain
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Letting z — 7o in (3.8.6) we deduce (3.8.4). Combining (3.8.4) and (3.8.6) yields

(3.8.3). [ |

Theorem 3.8.5. Let C be a path and let U be an open set. Let ¢(z, §) be a function
defined for z € U and § € C. Suppose that ¢(z, §) is continuous in § € C and ana-
Iytic in z € U and that the complex derivative % (z, §) is continuous in § € C. Then
the function
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is analytic in U and its derivative is
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Proof. For a fixed zo € U choose R > 0 so that Bg(zp) is contained in U. Let

M= _max |[¢(z, {)l.
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Since continuous functions attain a maximum on compact (i.e., closed and bounded)
sets, we have M < oo. For each {, by assumption ¢(z, ) is an analytic function of z
in U. For z such that 0 < |z —zo| < & and { € C, Lemma 3.8.4 implies



