$$
\int_{C_{1 / 4}(i)} \frac{f(z)}{z-i} d z=-\pi
$$

For the second integral, we have

$$
\int_{C_{1 / 4}(-i)} \frac{e^{\pi z}}{(z-i)(z+i)} d z=\int_{C_{1 / 4}(-i)} \frac{g(z)}{z+i} d z=2 \pi i g(-i)
$$

where $g(z)=\frac{e^{\pi z}}{z-i}$, and so $g(-i)=\frac{e^{-i \pi}}{-2 i}=\frac{1}{2 i}=-\frac{i}{2}$. Hence

$$
\int_{C_{1 / 4}(-i)} \frac{g(z)}{z-i} d z=\pi
$$

Adding the two integrals together, we find that

$$
\int_{C_{2}(0)} \frac{e^{\pi z}}{(z-i)(z+i)} d z=0
$$

Cauchy's integral formula (3.8.1) shows that the values of $f(z)$, for z inside the path C, are determined by the values of f on the curve C, and the way to recapture the values inside C is to integrate $f(\zeta)$ against the function $1 /[2 \pi i(\zeta-z)]$ on C. Something analogous is valid for the derivatives of f. To achieve this we need to know how to differentiate under the integral sign.

Differentiation Under the Integral Sign

We focus on the analyticity (and continuity) of a function of the form

$$
g(z)=\int_{C} \phi(z, \zeta) d \zeta
$$

sf where ζ lies on a simple closed curve path C and z lies in some open set. For instance in Theorem 3.8.1 we had $\phi(z, \zeta)=\frac{1}{2 \pi i} \frac{f(\zeta)}{\zeta-z}$. We begin with a lemma.

Lemma 3.8.4. Suppose that f is analytic on an open set containing the closed disk $\overline{B_{R}\left(z_{0}\right)}$ and satisfies $|f(z)| \leq M$ for all $z \in \overline{B_{R}\left(z_{0}\right)}$. Then for $0<\left|z-z_{0}\right|<\frac{R}{2}$ the following are valid

$$
\begin{equation*}
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f^{\prime}\left(z_{0}\right)\right| \leq 2 M \frac{\left|z-z_{0}\right|}{R^{2}} \tag{3.8.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C_{R}\left(z_{0}\right)} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{2}} d \zeta \tag{3.8.4}
\end{equation*}
$$

