(b) In evaluating $\int_{C_{2}(1)} \frac{z^{2}+3 z-1}{(z+3)(z-2)} d z$, we first note that the integrand is not analytic at the points $z=-3$ and $z=2$. Only the point $z=2$ is inside the curve $C_{2}(1)$. So if we let $f(z)=\frac{z^{2}+3 z-1}{z+3}$ the integral takes the form

$$
\int_{C_{2}(1)} \frac{f(z)}{z-2} d z=2 \pi i f(2)=\frac{18 \pi}{5} i
$$

by the Cauchy integral formula, applied at $z_{0}=2$.

Some integrals require multiple applications of Cauchy's formula along with applications of Cauchy's theorem. We illustrate this situation with an example.

Example 3.8.3. Compute

$$
\int_{C_{2}(0)} \frac{e^{\pi z}}{z^{2}+1} d z
$$

Solution. Since

$$
\frac{1}{z^{2}+1}=\frac{1}{(z+i)(z-i)}
$$

the integral cannot be computed directly from Cauchy's formula, since the path contains both $\pm i$ in its interior. To overcome this difficulty, draw small nonintersecting circles inside $C_{2}(0)$ around $\pm i$, say $C_{1 / 4}(i)$ and $C_{1 / 4}(-i)$, as illustrated in Figure 3.8.3. Since $\frac{e^{\pi z}}{z^{2}+1}$ is analytic in a region containing the interior of $C_{2}(0)$ and the exterior of the smaller circles, by Cauchy's theorem for multiple connected domains (Theorem 3.7.2), we have

Fig. 3.71 Fig 2. The integral over the outer path C is equal to the sum of the integrals over the inner non-overlapping circles.

$$
\int_{C_{2}(0)} \frac{e^{\pi z}}{z^{2}+1} d z=\int_{C_{1 / 4}(i)} \frac{e^{\pi z}}{z^{2}+1} d z+\int_{C_{1 / 4}(-i)} \frac{e^{\pi z}}{z^{2}+1} d z
$$

Now, the two integrals on the right can be evaluated with the help of Cauchy's integral formula (3.8.2). For the first one, we apply Cauchy's formula (3.8.2) with $f(z)=\frac{e^{\pi z}}{z+i}$ and $z_{0}=i$, and obtain

$$
\int_{C_{1 / 4}(i)} \frac{e^{\pi z}}{(z-i)(z+i)} d z=\int_{C_{1 / 4}(i)} \frac{f(z)}{z-i} d z=2 \pi i f(i)
$$

Since $f(i)=\frac{e^{i \pi}}{2 i}=\frac{-1}{2 i}=\frac{i}{2}$, we get

