For an arbitrary complex number w we have $w+\bar{w}=2 \operatorname{Re} w$ and thus we obtain

$$
z_{1} \overline{z_{2}}+\overline{z_{1}} z_{2}=z_{1} \overline{z_{2}}+\overline{z_{1} \overline{z_{2}}}=2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right) .
$$

Using this interesting identity, along with (1.2.8) and basic properties of complex conjugation, we obtain

$$
\begin{aligned}
\left|z_{1}+z_{2}\right|^{2} & =\left(z_{1}+z_{2}\right) \overline{\left(z_{1}+z_{2}\right)}=\left(z_{1}+z_{2}\right)\left(\overline{z_{1}}+\overline{z_{2}}\right) \\
& =z_{1} \overline{z_{1}}+z_{2} \overline{z_{2}}+z_{1} \overline{z_{2}}+\overline{z_{1}} z_{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+z_{1} \overline{z_{2}}+\overline{z_{1}} z_{2} \\
& =\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right) \\
& \leq\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1} \overline{z_{2}}\right| \quad \quad(\text { by }(1.2 .14)) \\
& =\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|\overline{z_{2}}\right| \\
& \left.=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right| \quad \quad \text { (by (1.2.9) and }\left|\overline{z_{2}}\right|=\left|z_{2}\right|\right) \\
& =\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2},
\end{aligned}
$$

and (1.2.16) follows upon taking square roots on both sides. Next, notice that (1.2.17) is obtained by a repeated applications of (1.2.16), while (1.2.18) is deduced from (1.2.16) replacing z_{2} by $-z_{2}$.

Replacing z_{1} by $z_{1}-z_{2}$ in (1.2.16), we obtain $\left|z_{1}\right| \leq\left|z_{1}-z_{2}\right|+\left|z_{2}\right|$, and so

$$
\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|
$$

Reversing the roles of z_{1} and z_{2}, and realizing that $\left|z_{2}-z_{1}\right|=\left|z_{1}-z_{2}\right|$, we also have

$$
\left|z_{1}-z_{2}\right| \geq\left|z_{2}\right|-\left|z_{1}\right| .
$$

Putting these two together, we conclude $\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$, which proves inequality in (1.2.20). Finally, we deduce (1.2.19) replacing z_{2} by $-z_{2}$.

The triangle inequality is used extensively in proofs to provide estimates on the sizes of complex-valued expressions. We illustrate such applications via examples.

Example 1.2.9. (Estimating the size of an absolute value) What is an upper bound for $\left|z^{5}-4\right|$ if $|z| \leq 1$?
Solution. Applying the triangle inequality, we get

$$
\left|z^{5}-4\right| \leq\left|z^{5}\right|+4=|z|^{5}+4 \leq 1+4=5
$$

because $|z| \leq 1$. Hence if $|z| \leq 1$, an upper bound for $\left|z^{5}-4\right|$ is 5 .
Can we find a number smaller than 5 that is also an upper bound, or is 5 the least upper bound? It is easy to see that for $z=-1$, we have $\left|z^{5}-4\right|=\left|(-1)^{5}-4\right|=$ $|-1-4|=5$. Thus, the upper bound 5 is best possible. You should be cautioned that, in general, the triangle inequality is considered a crude inequality, which means that it will not yield least upper bound estimates as it did in this case. See Exercise 37 for an illustration of this fact.

