neighborhood of either both Γ_{1} and Γ_{2}. Theorem 3.6.7 is now applicable and yields that

$$
\int_{\Gamma_{1}} f(z) d z=0 \quad \text { and } \quad \int_{\Gamma_{2}} f(z) d z=0
$$

Adding these two equalities, we obtain

$$
\int_{\Gamma_{1}} f(z) d z+\int_{\Gamma_{2}} f(z) d z=0
$$

or

$$
\int_{P} f(z) d z+\int_{Q} f(z) d z+\sum_{j=1}^{n}\left(\int_{P_{j}^{*}} f(z) d z+\int_{Q_{j}^{*}} f(z) d z\right)=0
$$

using Proposition 3.2.12(iii). Proposition 3.2.12(ii) now yields

$$
\int_{P_{j}^{*}} f(z) d z+\int_{Q_{j}^{*}} f(z) d z=-\int_{P_{j}} f(z) d z-\int_{Q_{j}} f(z) d z=-\int_{C_{j}} f(z) d z
$$

hence we conclude that

$$
\int_{P} f(z) d z+\int_{Q} f(z) d z-\sum_{j=1}^{n} \int_{C_{j}} f(z) d z=0
$$

which is equivalent to (3.7.1).
Next, in the fundamental integral of Example 3.2.10, we replace the circle by an arbitrary positively oriented, simple, closed path C that does not contain a fixed point z_{0}.

Example 3.7.4. Let C be a positively oriented, simple, closed path, and z_{0} be a point not on C. Then

$$
\int_{C} \frac{1}{z-z_{0}} d z= \begin{cases}0 & \text { if } z_{0} \text { lies in the exterior of } C \\ 2 \pi i & \text { if } z_{0} \text { lies in the interior of } C\end{cases}
$$

Moreover, for $n \neq 1$,

$$
\begin{equation*}
\int_{C} \frac{1}{\left(z-z_{0}\right)^{n}} d z=0 \tag{3.7.2}
\end{equation*}
$$

Solution. If z_{0} lies in the exterior of C, then $\frac{1}{z-z_{0}}$ is analytic inside and on C and hence the integral is 0 , by Theorem 3.6.7 (Instead of Theorem 3.6.7 we may also apply Theorem 3.4.4 since $\frac{1}{z-z_{0}}$ has continuous derivatives.)

To deal with the case where z_{0} lies in the interior of C, choose $R>0$ such that $C_{R}\left(z_{0}\right)$ is contained in the interior of C. The function $\frac{1}{z-z_{0}}$ is analytic in $\mathbb{C} \backslash\left\{z_{0}\right\}$. Applying conclusion (3.7.1) of Theorem 3.7.2, we see that

$$
\int_{C} \frac{1}{z-z_{0}} d z=\int_{C_{R}\left(z_{0}\right)} \frac{1}{z-z_{0}} d z=2 \pi i,
$$

