$$
\begin{equation*}
\left|z_{1}+z_{2}+\cdots+z_{n}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\cdots+\left|z_{n}\right| . \tag{1.2.17}
\end{equation*}
$$

The absolute value of the difference $z_{1}-z_{2}$ satisfies

$$
\begin{equation*}
\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| . \tag{1.2.18}
\end{equation*}
$$

Moreover, we have the lower estimates

$$
\begin{equation*}
\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \tag{1.2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \tag{1.2.20}
\end{equation*}
$$

Proof. Consider a nondegenerate right triangle with vertices at $0, z=(x, y)$, and $\operatorname{Re} z=x$, as shown in Figure 1.11. The sides of the triangle are $|\operatorname{Re} z|=|x|,|\operatorname{Im} z|=$ $|y|$, and the hypotenuse is $|z|$. Since the hypotenuse is larger than either of the other two sides, we obtain (1.2.14). Since the sum of two sides in a triangle is larger than the third side, we obtain (1.2.15). Of course, (1.2.14) and (1.2.15) are also consequences of the inequalities

$$
|x| \leq \sqrt{x^{2}+y^{2}}, \quad|y| \leq \sqrt{x^{2}+y^{2}}, \quad \text { and } \quad \sqrt{x^{2}+y^{2}} \leq|x|+|y|,
$$

which are straightforward to prove.

Fig. 1.11 Related to inequalities (1.2.14) and (1.2.15).

Fig. 1.12 Ineq. (1.2.16).

Fig. 1.13 Ineq. (1.2.20).

A geometric proof of the triangle inequality (1.2.16) is contained in Figure 1.12 where a triangle with sides $\left|z_{1}+z_{2}\right|,\left|z_{1}\right|$, and $\left|z_{2}\right|$ appears. Then $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ is a consequence of the fact that the sum $\left|z_{1}\right|+\left|z_{2}\right|$ of two sides is larger than the length of the third side, which is $\left|z_{1}+z_{2}\right|$. The triangle in Figure 1.13 with vertices at $0, z_{1}$, and z_{2} provides a geometric proof of the lower triangle inequality (1.2.20): The length $\left|z_{1}-z_{2}\right|$ of the side of triangle is at least as big as the differences of the other two sides which are $\left|z_{1}\right|-\left|z_{2}\right|$ and $\left|z_{2}\right|-\left|z_{1}\right|$.

Since the triangle inequality (1.2.16) is fundamental in the development of complex analysis, we also offer an algebraic proof. Start by observing that

$$
\overline{z_{1} \overline{z_{2}}}=\overline{z_{1}} \overline{\overline{z_{2}}}=\overline{z_{1}} z_{2}
$$

