$$
\begin{equation*}
\int_{C} f(z) d z=\sum_{j=1}^{n} \int_{C_{j}} f(z) d z \tag{3.7.1}
\end{equation*}
$$

Remark 3.7.3. We may informally say that in the hypothesis of the preceding theorem the function f is required to be analytic on a path ${ }^{4} C$ and on its interior minus a few simply-connected "holes" denoted by Ω_{j}.

Proof. Fix a point z_{0} on the outer path C. Join z_{0} to a point w_{1} in C_{1} via a simple polygonal path L_{1}. Pick z_{1} on C_{1} and let P_{1} be the part of C_{1} from w_{1} to z_{1} traversed in the orientation of C_{1}. By Lemma 3.7.1, $\Omega \backslash\left(L_{1} \cup P_{1}\right)$ is connected and thus there is a simple polygonal path L_{2} disjoint from $L_{1} \cup P_{1}$ that joins z_{1} to a point w_{2} in C_{2}.

Pick $z_{2} \in C_{2}$ and let P_{2} be the part of C_{2} from w_{2} to z_{2} traversed in the orientation of C_{2}. By Lemma 3.7.1, $\Omega \backslash\left(L_{1} \cup P_{1} \cup L_{2} \cup P_{2}\right)$ is connected and thus there is simple polygonal path L_{3} disjoint from $L_{1} \cup P_{1} \cup L_{2} \cup P_{2}$ that joins z_{2} to a point w_{3} in C_{3}.

Continuing in this fashion, we find points w_{n} and z_{n} on C_{n} and we let P_{n} be the part of C_{n} from w_{n} to z_{n} traversed in the same orientation. At the end, join z_{n} to a point w_{n+1} in C via a simple polygonal path L_{n+1} that does not intersect the previously selected path from z_{0} to z_{n}, passing through $w_{1}, z_{1}, w_{2}, z_{2}, \ldots, w_{n}$. In the selection of these points we defined

$$
P_{j}=\text { part of } C_{j} \text { from } w_{j} \text { to } z_{j} \text { traversed in the orientation of } C_{j}
$$

for $j=1, \ldots, n$, and now also define

$$
Q_{j}=\text { part of } C_{j} \text { from } z_{j} \text { to } w_{j} \text { traversed in the orientation of } C_{j} .
$$

Also let P be the part of C from z_{0} to w_{n+1} and let Q be the part of C from w_{n+1} to z_{0} both traversed in the orientation inherited by C.

This construction yields two simple closed paths Γ_{1} and Γ_{2}, as illustrated in Figure 3.62, precisely defined as follows:
$\Gamma_{1}=\left[P, L_{n+1}^{*}, Q_{n}^{*}, L_{n}^{*}, Q_{n-1}^{*}, \ldots, Q_{1}^{*}, L_{1}^{*}\right]$
$\Gamma_{2}=\left[L_{1}, P_{1}^{*}, L_{2}, P_{2}^{*}, L_{3}, \ldots, P_{n}^{*}, L_{n+1}, Q\right]$
for $j=1, \ldots, n$. (Recall that γ^{*} is the reverse of a path γ.)

Fig. 3.62 The construction of Γ_{1} and Γ_{2}.

Moreover, we have arranged so that all pieces of the complement of Ω in the interior of C do not lie in the interior of Γ_{1} or Γ_{2}. Thus the interior regions of Γ_{1} and Γ_{2} are simply connected and f is analytic in a slightly larger simply connected

[^0]
[^0]: ${ }^{4}$ analytic on C means analytic in a neighborhood of C

