3.6 Cauchy Integral Theorem For Simply-Connected Regions

Integral Invariance for Homotopic Paths

Theorem 3.6.5. Let f be an analytic function in a region Ω and let γ_0 and γ_1 be paths in Ω defined on [0,1].

(i) If $\gamma_0(0) = \gamma_1(0) = \alpha \in \Omega$, $\gamma_0(1) = \gamma_1(1) = \beta \in \Omega$, and γ_0 is homotopic to γ_1 according to Definition 3.6.1, then

$$\int_{\gamma_0} f(z) \, dz = \int_{\gamma_1} f(z) \, dz.$$
 (3.6.9)

(ii) If γ_0 and γ_1 are closed homotopic paths then (3.6.9) holds. (iii) If γ_0 is homotopic to a point in Ω , then

$$\int_{\gamma_0} f(z) \, dz = 0. \tag{3.6.10}$$

Proof. Note that the assertion in (*iii*) follows from that in (*ii*) because the integral of a function over a point is zero. Also, the statement in (*ii*) is a consequence of that in (*i*). Indeed, let $\alpha = \gamma_0(0) = \gamma_0(1)$ and $\beta = \gamma_1(0) = \gamma_1(1)$. Define a path $\gamma_{\alpha,\beta}(s) = H(0,s) = H(1,s)$ in Ω that connects α to β . Then consider the path $\widetilde{\gamma}_1 = \gamma_{\alpha,\beta} \cup \gamma_1 \cup (\gamma_{\alpha,\beta})^*$, which starts and ends at the point α just like γ_0 . Then $\widetilde{\gamma}_1$ is homotopic² to γ_0 . Assuming the assertion in (*i*), (3.6.9) gives

$$\begin{split} \int_{\gamma_0} f(z) \, dz &= \int_{\widetilde{\gamma}_1} f(z) \, dz \\ &= \int_{\gamma_{\alpha,\beta}} f(z) \, dz + \int_{\gamma_1} f(z) \, dz + \int_{(\gamma_{\alpha,\beta})^*} f(z) \, dz \\ &= \int_{\gamma_1} f(z) \, dz, \end{split}$$

since $\int_{(\gamma_{\alpha,\beta})^*} f(z) dz = -\int_{\gamma_{\alpha,\beta}} f(z) dz$. Thus (*ii*) holds assuming (*i*).

We now prove the claimed assertion in (*i*). Let γ_0 and γ_1 be paths in Ω joining α to β . If Ω is the entire plane, which is a star-shaped region, Theorem 3.5.4, yields the claimed assertion. If Ω is not the entire plane, its boundary $\partial\Omega$ is closed and nonempty. Let *H* denote the mapping of the unit square $Q = [0, 1] \times [0, 1]$ into Ω that continuously deforms γ_0 into γ_1 , and let K = H[Q]. Since Q is closed and bounded, and *H* is continuous, it follows that *K* is closed and bounded. Since *K* is contained in the (open region) Ω , it is disjoint from the closed boundary of Ω . So if δ denotes the distance from $\partial\Omega$ to *K*, then δ is positive (Appendix, page 483).

Since *H* is continuous on *Q* and *Q* is closed and bounded, it follows that *H* is uniformly continuous on *Q*. So for the given $\delta > 0$ (which plays the role of $\varepsilon > 0$ in the definition of uniform continuity), there is a positive integer *n* such that

² The mapping $\mathscr{H}(t,s) = H(0,3ts)$ for $0 \le t \le \frac{1}{3}$, $\mathscr{H}(t,s) = H(3t-1,s)$ for $\frac{1}{3} \le t \le \frac{2}{3}$, $\mathscr{H}(t,s) = H(0,(3-3t)s)$ for $\frac{2}{3} \le t \le 1$, $0 \le s \le 1$, continuously deforms γ_0 to $\tilde{\gamma}_1$.