Integral Invariance for Homotopic Paths

Theorem 3.6.5. Let f be an analytic function in a region Ω and let γ_{0} and γ_{1} be paths in Ω defined on $[0,1]$.
(i) If $\gamma_{0}(0)=\gamma_{1}(0)=\alpha \in \Omega, \gamma_{0}(1)=\gamma_{1}(1)=\beta \in \Omega$, and γ_{0} is homotopic to γ_{1} according to Definition 3.6.1, then

$$
\begin{equation*}
\int_{\gamma_{0}} f(z) d z=\int_{\gamma_{1}} f(z) d z \tag{3.6.9}
\end{equation*}
$$

(ii) If γ_{0} and γ_{1} are closed homotopic paths then (3.6.9) holds.
(iii) If γ_{0} is homotopic to a point in Ω, then

$$
\begin{equation*}
\int_{\gamma_{0}} f(z) d z=0 . \tag{3.6.10}
\end{equation*}
$$

Proof. Note that the assertion in (iii) follows from that in (ii) because the integral of a function over a point is zero. Also, the statement in (ii) is a consequence of that in (i). Indeed, let $\alpha=\gamma_{0}(0)=\gamma_{0}(1)$ and $\beta=\gamma_{1}(0)=\gamma_{1}(1)$. Define a path $\gamma_{\alpha, \beta}(s)=H(0, s)=H(1, s)$ in Ω that connects α to β. Then consider the path $\widetilde{\gamma}_{1}=$ $\gamma_{\alpha, \beta} \cup \gamma_{1} \cup\left(\gamma_{\alpha, \beta}\right)^{*}$, which starts and ends at the point α just like γ_{0}. Then $\widetilde{\gamma}_{1}$ is homotopic ${ }^{2}$ to γ_{0}. Assuming the assertion in (i), (3.6.9) gives

$$
\begin{aligned}
\int_{\gamma_{0}} f(z) d z & =\int_{\tilde{\gamma}_{1}} f(z) d z \\
& =\int_{\gamma_{\alpha, \beta}} f(z) d z+\int_{\gamma_{1}} f(z) d z+\int_{\left(\gamma_{\alpha, \beta}\right)^{*}} f(z) d z \\
& =\int_{\gamma_{1}} f(z) d z
\end{aligned}
$$

since $\int_{\left(\gamma_{\alpha, \beta}\right)^{*}} f(z) d z=-\int_{\gamma_{\alpha, \beta}} f(z) d z$. Thus (ii) holds assuming (i).
We now prove the claimed assertion in (i). Let γ_{0} and γ_{1} be paths in Ω joining α to β. If Ω is the entire plane, which is a star-shaped region, Theorem 3.5.4, yields the claimed assertion. If Ω is not the entire plane, its boundary $\partial \Omega$ is closed and nonempty. Let H denote the mapping of the unit square $Q=[0,1] \times[0,1]$ into Ω that continuously deforms γ_{0} into γ_{1}, and let $K=H[Q]$. Since Q is closed and bounded, and H is continuous, it follows that K is closed and bounded. Since K is contained in the (open region) Ω, it is disjoint from the closed boundary of Ω. So if δ denotes the distance from $\partial \Omega$ to K, then δ is positive (Appendix, page 483).

Since H is continuous on Q and Q is closed and bounded, it follows that H is uniformly continuous on Q. So for the given $\delta>0$ (which plays the role of $\varepsilon>0$ in the definition of uniform continuity), there is a positive integer n such that

[^0]
[^0]: ${ }^{2}$ The mapping $\mathscr{H}(t, s)=H(0,3 t s)$ for $0 \leq t \leq \frac{1}{3}, \mathscr{H}(t, s)=H(3 t-1, s)$ for $\frac{1}{3} \leq t \leq \frac{2}{3}, \mathscr{H}(t, s)=$ $H(0,(3-3 t) s)$ for $\frac{2}{3} \leq t \leq 1,0 \leq s \leq 1$, continuously deforms γ_{0} to $\widetilde{\gamma}_{1}$.

