In other words, star-shaped sets contain all closed line segments starting from a fixed point $z_{0}$ and ending at an arbitrary point in the set. See Figure 3.39. Convex sets are always star-shaped about any point in them, but the converse is not true.


Fig. 3.39 These non-convex regions are star-shaped regions about the points indicated by dots.

Theorem 3.5.4. Suppose that $V$ is an open star-shaped subset of the plane and let $f$ be an analytic function on $V$. Then for a simple any closed path $\gamma$ contained in $V$ we have

$$
\begin{equation*}
\int_{\gamma} f(z) d z=0 \tag{3.5.7}
\end{equation*}
$$

Proof. Fix a point $z_{0}$ in $V$ such that $\left[z_{0}, z\right]$ lies in $V$ for all $z \in V$. Define the function

$$
F(z)=\int_{\left[z_{0}, z\right]} f(\zeta) d \zeta, \quad \text { for } z \in V
$$

Since the line segment is contained in $V$, the function $F$ is well-defined. We show that $F$ has a complex derivative equal to $f$. Let $z \in V$ and let $\delta>0$ be such that $B_{\delta}(z)$ is contained in $V$. Then the closed triangle $\left[z_{0}, z, z+h, z_{0}\right]$ is contained in $V$ and Theorem 3.5.2 yields

$$
\int_{\left[z_{0}, z, z+h, z_{0}\right]} f(\zeta) d \zeta=0
$$

In view of Properties (3.2.21) and (3.2.22) we have for $h \in B_{\delta}(0)$

$$
\int_{\left[z_{0}, z\right]} f(\zeta) d \zeta+\int_{[z, z+h]} f(\zeta) d \zeta-\int_{\left[z_{0}, z+h\right]} f(\zeta) d \zeta=0
$$

thus

$$
\frac{F(z+h)-F(z)}{h}=\frac{1}{h} \int_{[z, z+h]} f(\zeta) d \zeta .
$$

Letting $h \rightarrow 0$ and using Lemma 3.3.3, we conclude that $F$ has a complex derivative at any point $z$ in $V$ and $F^{\prime}(z)=f(z)$. Then by Theorem 3.3.4, the integral of $f$ around an arbitrary closed path $\gamma$ contained in $V$ is zero.

