$$
\int_{\gamma}-y d x+x d y=\iint_{D} 2 d x d y=2 \times(\text { Area of } D)
$$

For example, if γ is the unit circle with positive orientation, then the integral is equal to $2 \times($ Area of unit disk $)=2 \pi$.

We apply Green's theorem to evaluate path integrals of the form $\int_{\gamma} f(z) d z$ where γ is a simple closed path and f is an analytic function on γ and the region interior to γ. For this purpose, parametrize γ by $\gamma(t)=x(t)+i y(t)$, where $a \leq t \leq b$, and write $f(z)=u(x, y)+i v(x, y)$, where u and v are the real and imaginary parts of f, respectively. Then, by the definition of path integrals, we write

$$
\begin{align*}
\int_{\gamma} f(z) d z= & \int_{a}^{b}[u(x(t), y(t))+i v(x(t), y(t))]\left(x^{\prime}(t)+i y^{\prime}(t)\right) d t \\
= & \int_{a}^{b}\left(u(x(t), y(t)) x^{\prime}(t)-v(x(t), y(t)) y^{\prime}(t)\right) d t \\
& \quad+i \int_{a}^{b}\left(v(x(t), y(t)) x^{\prime}(t)+u(x(t), y(t)) y^{\prime}(t)\right) d t \\
= & \int_{\gamma}(u d x-v d y)+i \int_{\gamma}(v d x+u d y) \tag{3.4.2}
\end{align*}
$$

Thus the path integral $\int_{\gamma} f(z) d z$ is equal to a complex linear combination of two line integrals of real-valued functions. To remember (3.4.2), starting with $\int_{\gamma} f(z) d z$, we use $f(z)=u+i v$ and $d z=d x+i d y$ as follows:

$$
\int_{\gamma} f(z) d z=\int_{\gamma}(u+i v)(d x+i d y)=\int_{\gamma}(u d x-v d y)+i \int_{\gamma}(v d x+u d y)
$$

We now state the main result of this section.
Theorem 3.4.4. (Cauchy's Theorem for Simple Paths) Suppose that f is an analytic function on a region U that contains a simple closed path γ and its interior. If f^{\prime} is continuous on U, then we have

$$
\begin{equation*}
\int_{\gamma} f(z) d z=0 \tag{3.4.3}
\end{equation*}
$$

Remark 3.4.5. We later prove that derivatives of analytic functions are also analytic, hence continuous (Corollary 3.8.9). Thus the assumption that f^{\prime} is continuous in Theorem 3.4.4 is superfluous. The merit of Theorem 3.4.4 lies in the fact that all analytic functions we encounter in examples have continuous derivatives.

Proof. Recall that if $f=u+i v, u, v$ real-valued, then $f^{\prime}=u_{x}+i v_{x}$ in view of (2.5.8), and the Cauchy-Riemann equations (2.5.7) hold: $u_{x}=v_{y}$ and $u_{y}=-v_{x}$. Using (3.4.2), and then applying Green's theorem along with the Cauchy-Riemann equations, we write

