Solution. In order to apply Theorem 3.3.4, we must find an antiderivative of $\frac{1}{z}$ that is analytic in a region that contains the path $\left[z_{1}, z_{2}, z_{3}\right]$. We cannot use $\log z$ as antiderivative, because it is not analytic in a region that contains the path $\left[z_{1}, z_{2}, z_{3}\right]$. Instead, we will use a different branch of the logarithm. We know from Example 3.3.2(d) that $\log _{\alpha} z$ is an antiderivative of $\frac{1}{z}$ in the region $\Omega_{\alpha}(\mathbb{C}$ minus the ray at angle α). Choose α in such a way that the branch cut of $\log _{\alpha} z$ does not intersect the path $\left[z_{1}, z_{2}, z_{3}\right]$.

Fig. 3.32 Picture for Example 3.3.7

Taking, for example, $\alpha=0$ we write

$$
\log _{0} z=\ln |z|+i \arg _{0} z
$$

where $0<\arg _{0} z \leq 2 \pi$. By Theorem 3.3.4 we have

$$
\begin{aligned}
\int_{\left[z_{1}, z_{2}, z_{3}\right]} \frac{1}{z} d z & =\log _{0}\left(z_{3}\right)-\log _{0}\left(z_{1}\right) \\
& =\ln |-4-4 i|+i \arg _{0}(-4-4 i)-\left(\ln 1+i \arg _{0}(-1)\right) \\
& =\frac{1}{2} \ln 32+i \frac{5 \pi}{4}-i \pi=\frac{5}{2} \ln 2+i \frac{\pi}{4}
\end{aligned}
$$

Thus the value of the integral is equal to $\frac{5}{2} \ln 2+i \frac{\pi}{4}$.

Integrals over Closed Paths

We now turn to applications of Theorem 3.3.4 related to integrals over closed paths. We start with some straightforward ones.

Example 3.3.8. (Integrals over closed paths)

(a) Since $z^{2} / 2$ is an antiderivative of z on the plane, if γ is a closed path, then by Theorem 3.3.4,

$$
\int_{\gamma} z d z=0
$$

(b) Likewise,

$$
\int_{\gamma} e^{2 i z} d z=0
$$

because $e^{2 i z}$ has an antiderivative $\frac{e^{2 i z}}{2 i}$ for all z in the plane.

