where $\gamma\left(z_{0}, z\right)$ is a path joining z_{0} to z. Such a path exists since Ω is polygonally connected and the function in (3.3.5) is well defined, in view of the property that the integral is independent of path.

Since Ω is open and $z \in \Omega$, there is an open disc $B_{r}(z)$ centered at z which is entirely contained in Ω. For $z+w$ in $B_{r}(z)$, the line segment $[z, z+w]$ lies in Ω.

Since the integral of f is independent of path, we do not choose an arbitrary path that joins z_{0} to $z+w$ but we choose the path

$$
\gamma\left(z_{0}, z+w\right)=\left[\gamma\left(z_{0}, z\right),[z, z+w]\right],
$$

formed by the path $\gamma\left(z_{0}, z\right)$ followed by the line segment $[z, z+w]$, as shown in Figure 3.25.

Fig. 3.25 Picture of the proof.

Then, in view of Proposition 3.2.12 (iii), we have

$$
\int_{\gamma\left(z_{0}, z+w\right)} f(\zeta) d \zeta=\int_{\gamma\left(z_{0}, z\right)} f(\zeta) d \zeta+\int_{[z, z+w]} f(\zeta) d \zeta
$$

and so

$$
F(z+w)-F(z)=\int_{\gamma\left(z_{0}, z+w\right)} f(\zeta) d \zeta-\int_{\gamma\left(z_{0}, z\right)} f(\zeta) d \zeta=\int_{[z, z+w]} f(\zeta) d \zeta
$$

Then,

$$
\begin{equation*}
\frac{F(z+w)-F(z)}{w}=\frac{1}{w} \int_{[z, z+w]} f(\zeta) d \zeta . \tag{3.3.6}
\end{equation*}
$$

Taking the limit as $w \rightarrow 0$ and appealing to Lemma 3.3.3, we obtain that the function F has a complex derivative at z and $F^{\prime}(z)=f(z)$.

Finally, it remains to prove the equivalence of (b) and (c). To see this, consider the closed path γ in Figure 3.26 containing the point z_{1}.

Fig. 3.26 A closed path starting and ending at the same point z_{1}.

Fig. $3.27 \gamma_{1}$ followed by $\gamma_{2}{ }^{*}$.

