where $\gamma(z_0, z)$ is a path joining z_0 to z. Such a path exists since Ω is polygonally connected and the function in (3.3.5) is well defined, in view of the property that the integral is independent of path.

Since Ω is open and $z \in \Omega$, there is an open disc $B_r(z)$ centered at z which is entirely contained in Ω . For z + w in $B_r(z)$, the line segment [z, z + w] lies in Ω .

Since the integral of f is independent of path, we do not choose an arbitrary path that joins z_0 to z + w but we choose the path

$$\boldsymbol{\gamma}(z_0, z+w) = \left[\boldsymbol{\gamma}(z_0, z), [z, z+w]\right],$$

formed by the path $\gamma(z_0, z)$ followed by the line segment [z, z + w], as shown in Figure 3.25.

Fig. 3.25 Picture of the proof.

Then, in view of Proposition 3.2.12 (iii), we have

$$\int_{\gamma(z_0,z+w)} f(\zeta) d\zeta = \int_{\gamma(z_0,z)} f(\zeta) d\zeta + \int_{[z,z+w]} f(\zeta) d\zeta$$

and so

$$F(z+w)-F(z) = \int_{\gamma(z_0,z+w)} f(\zeta) d\zeta - \int_{\gamma(z_0,z)} f(\zeta) d\zeta = \int_{[z,z+w]} f(\zeta) d\zeta.$$

Then,

$$\frac{F(z+w) - F(z)}{w} = \frac{1}{w} \int_{[z,z+w]} f(\zeta) \, d\zeta.$$
(3.3.6)

Taking the limit as $w \to 0$ and appealing to Lemma 3.3.3, we obtain that the function *F* has a complex derivative at *z* and F'(z) = f(z).

Finally, it remains to prove the equivalence of (b) and (c). To see this, consider the closed path γ in Figure 3.26 containing the point z_1 .

Fig. 3.26 A closed path starting and ending at the same point z_1 .

Fig. 3.27 γ_1 followed by γ_2^* .