3.3 Independence of Paths

If $|w| < \delta$, we have $|tw| < \delta$ for all $t \in [0, 1]$ and thus $|f(z+tw) - f(z)| < \varepsilon$. From the *ML*-inequality (3.2.31), we obtain for $|w| < \delta$

$$\left| \int_{0}^{1} f(z+tw) \, dt - f(z) \right| = \left| \int_{0}^{1} [f(z+tw) - f(z)] \, dt \right| \le \int_{0}^{1} |f(z+tw) - f(z)| \, dt \le \varepsilon$$

and (3.3.1) follows using (3.3.2) by the (ε, δ) -definition of the limit.

We are now able to prove the main result of this section.

Theorem 3.3.4. (Independence of Path) Let f be a continuous complex-valued function on a region Ω . Then the following assertions are equivalent:

(a) There is an analytic function F on Ω such that f(z) = F'(z) for all z in Ω . (b) For arbitrary points z_1 , z_2 and any path γ in Ω that joins z_1 to z_2 , the integral

$$I = \int_{\gamma} f(z) \, dz$$

is independent of the path γ .

(c) The integral of f over all closed paths is zero. Moreover, if (a) holds¹, then for any path γ in Ω that joins z_1 and z_2 we have

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1). \tag{3.3.3}$$

Proof. If *F* is an antiderivative of *f* in Ω , then the complex-valued function $t \mapsto F(\gamma(t))$ is differentiable at the points *t* in (a,b) where $\gamma'(t)$ exists and we have

$$\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t) = f(\gamma(t))\gamma'(t)$$
(3.3.4)

in view of Theorem 3.1.8. Now $t \mapsto f(\gamma(t))\gamma'(t)$ is piecewise continuous, because f is continuous and γ' is piecewise continuous. Also, since $F \circ \gamma$ is continuous, (3.3.4) tells us that $F \circ \gamma$ is a continuous antiderivative of $(f \circ \gamma)\gamma'$, in the sense of Theorem 3.2.7. Using this theorem, we deduce

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt = F(\gamma(b)) - F(\gamma(a)) = F(z_2) - F(z_1),$$

completing the proof that (a) implies (b) and simultaneously deriving (3.3.3).

We now show that (b) implies (a). We only need to show that if I is independent of path, then f has an antiderivative F. Fix z_0 in Ω . For z in Ω , define

$$F(z) = \int_{\gamma(z_0, z)} f(\zeta) d\zeta, \qquad (3.3.5)$$

¹and thus if (b) or (c) hold