162 3 Complex Integration

where oy and f are in [t;_1,#]. Then (3.2.28) becomes
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Recognizing this sum as a Riemann sum and taking limits as the partition gets finer,
we recover the formula for arc length from calculus:
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where the second equality follows from the complex notation ¥'(¢) = x'(¢) +iy'(¢)
and so /I ()P + Y (O] = [7(0)]

For a piecewise smooth path ¥, we repeat the preceding analysis for each smooth
piece ¥; of y and then add the lengths £(;)’s. Definition 3.1.9 guarantees that each
y; has a continuous derivative on the subinterval [a;,a;;1] on which it is defined,
thus /(y;) is finite, hence so is /(7). This process yields formula (3.2.29) for the
arc length of a piecewise smooth path y as well, where the integrand in this case is
piecewise continuous. The element of arc length is usually denoted by ds. Thus,

ds =\/|x'(t)]2+ |y (1) ar. (3.2.30)

Example 3.2.18. (Arc length of cycloid) Let @ > 0. Find the length of the arch of
the cycloid y(¢) = a(r —sint) +ia(1 —cost), where ¢ ranges over the interval [0, 27].
The curve, illustrated in Figure 3.23, is
formed by the trace of a fixed point on a
moving circle that completes a full ro-
tation.
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Solution. We have Fig. 3.23 First arch of the cycloid.

x(t) =a(t—sint) = x'(t)=a(l—cost);

y(t)=a(l—cost) = (t)=asint.

Hence

ds = /X ()2 +y (t)?dt = \/a2 ((1 —cosr)? —i—sinzt) dt
— a\/2(1 —cost)dt = 2a sin (%) dt.

Applying (3.2.29), and using that sin(7/2) > 0 for 0 <t < 27, we obtain the length
of the arch



