where α_{k} and β_{k} are in $\left[t_{k-1}, t_{k}\right]$. Then (3.2.28) becomes

$$
\sum_{k=1}^{m} \sqrt{\left|x^{\prime}\left(\alpha_{k}\right)\right|^{2}+\left|y^{\prime}\left(\beta_{k}\right)\right|^{2}}\left(t_{k}-t_{k-1}\right)
$$

Recognizing this sum as a Riemann sum and taking limits as the partition gets finer, we recover the formula for arc length from calculus:

$$
\begin{equation*}
\ell(\gamma)=\int_{a}^{b} \sqrt{\left|x^{\prime}(t)\right|^{2}+\left|y^{\prime}(t)\right|^{2}} d t=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t \tag{3.2.29}
\end{equation*}
$$

where the second equality follows from the complex notation $\gamma^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t)$ and so $\sqrt{\left|x^{\prime}(t)\right|^{2}+\left|y^{\prime}(t)\right|^{2}}=\left|\gamma^{\prime}(t)\right|$.

For a piecewise smooth path γ, we repeat the preceding analysis for each smooth piece γ_{j} of γ and then add the lengths $\ell\left(\gamma_{j}\right)$'s. Definition 3.1.9 guarantees that each γ_{j} has a continuous derivative on the subinterval $\left[a_{j}, a_{j+1}\right]$ on which it is defined, thus $\ell\left(\gamma_{j}\right)$ is finite, hence so is $\ell(\gamma)$. This process yields formula (3.2.29) for the arc length of a piecewise smooth path γ as well, where the integrand in this case is piecewise continuous. The element of arc length is usually denoted by $d s$. Thus,

$$
\begin{equation*}
d s=\sqrt{\left|x^{\prime}(t)\right|^{2}+\left|y^{\prime}(t)\right|^{2}} d t \tag{3.2.30}
\end{equation*}
$$

Example 3.2.18. (Arc length of cycloid) Let $a>0$. Find the length of the arch of the cycloid $\gamma(t)=a(t-\sin t)+i a(1-\cos t)$, where t ranges over the interval $[0,2 \pi]$.
The curve, illustrated in Figure 3.23, is formed by the trace of a fixed point on a moving circle that completes a full rotation.

Fig. 3.23 First arch of the cycloid.

$$
\begin{aligned}
& x(t)=a(t-\sin t) \quad \Rightarrow \quad x^{\prime}(t)=a(1-\cos t) \\
& y(t)=a(1-\cos t) \quad \Rightarrow \quad y^{\prime}(t)=a \sin t
\end{aligned}
$$

Hence

$$
\begin{aligned}
d s & =\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=\sqrt{a^{2}\left((1-\cos t)^{2}+\sin ^{2} t\right)} d t \\
& =a \sqrt{2(1-\cos t)} d t=2 a \sin \left(\frac{t}{2}\right) d t
\end{aligned}
$$

Applying (3.2.29), and using that $\sin (t / 2) \geq 0$ for $0 \leq t \leq 2 \pi$, we obtain the length of the arch

