The graph of curve γ is simply the graph of f over the interval $[-\pi, \pi]$. For $t \neq 0$, we have

$$
f^{\prime}(t)=2 t \sin \frac{1}{t}-\cos \frac{1}{t}
$$

and for $t=0$

$$
f^{\prime}(0)=\lim _{t \rightarrow 0} \frac{t^{2} \sin \frac{1}{t}}{t}=0
$$

by the squeeze theorem. So f is continuous and differentiable on the closed intervals $[-\pi, 0]$ and $[0, \pi]$ (with one-sided limits at the endpoints). But f^{\prime} is not continuous on $[-\pi, 0]$ or on $[0, \pi]$; thus γ is not a path. The graphs of f and f^{\prime} are shown in Figure 3.14.

Fig. $3.14 f$ is a differentiable function but its derivative is not continuous at a point. Thus the graph of f is not a piecewise continuous curve, i.e., a path.

Exercises 3.1

In Exercises 1-8 parametrize the curves over suitable intervals $[a, b]$.

1. The line segment with initial point $z_{1}=1+i$ and terminal point $z_{2}=-1-2 i$.
2. The line segment through the origin as initial point and terminal point $z=e^{i \frac{\pi}{3}}$.
3. The counterclockwise circle with center at $3 i$ and radius 1 .
4. The clockwise circle with center at $-2-i$ and radius 3 .
5. The positively oriented arc on the unit circle such that $-\frac{\pi}{4} \leq \operatorname{Arg} z \leq \frac{\pi}{4}$.
6. The negatively oriented arc on the unit circle such that $-\frac{\pi}{4} \leq \operatorname{Arg} z \leq \frac{\pi}{4}$.
7. The closed polygonal path $\left[z_{1}, z_{2}, z_{3}, z_{1}\right]$ where $z_{1}=0, z_{2}=i$, and $z_{3}=-1$.
8. The polygonal path $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$ where $z_{1}=1, z_{2}=2, z_{3}=i$, and $z_{4}=2 i$.

In Exercises 9-11, describe the parametrizations of the paths shown in the figures.
9.

10.

Fig. 3.16 Vertical line segment followed by circular arc of radius 2 centered at 0 .
11.

Fig. 3.17 Arc of the parabola $y=x^{2}$ for $-1 \leq x \leq 1$.

Fig. 3.15 Circular arc of radius 5 centered at $-3+2 i$.
12. Find a parametrization for the reverse of the path in Exercise 9.

