Definition 3.1.10. A path or a contour is a curve γ defined on a closed interval $[a, b]$ which is continuously differentiable or piecewise continuously differentiable. The path γ is closed if $\gamma(a)=\gamma(b)$.

Definition 3.1.11. Given points $a_{0}<a_{1}<\cdots<a_{m}$ and paths γ_{j} on $\left[a_{j-1}, a_{j}\right], j=$ $1, \ldots, m$, such that $\gamma_{j}\left(a_{j}\right)=\gamma_{j+1}\left(a_{j}\right)$ for all $j=1, \ldots, m-1$, the combined path

$$
\Gamma=\left[\gamma_{1}, \ldots, \gamma_{m}\right]
$$

is piecewise defined on $\left[a_{0}, a_{m}\right]$ by $\Gamma(t)=\gamma_{j}(t)$ for $t \in\left[a_{j-1}, a_{j}\right], j=1, \ldots, m$.
Thus, according to Definitions 3.1.10 and 3.1.11, a path or a contour γ is a finite sequence of continuously differentiable curves, $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}$, joined at the endpoints, i.e., $\gamma=\left[\gamma_{1}, \ldots, \gamma_{m}\right]$. The path γ is closed if the initial point of γ_{1} coincides the terminal point of γ_{m}, i.e., $\gamma_{1}\left(a_{0}\right)=\gamma_{m}\left(a_{m}\right)$.

Example 3.1.12. The path $\gamma=\left[\gamma_{1}, \gamma_{2}, \gamma_{3}\right]$ in Figure 3.10 consists of the curves: The line segment $\gamma_{1}=[-2,-1]$; the semicircle γ_{2}; and the line segment $\gamma_{3}=[1,2]$. We can parametrize γ by the interval $[-2,2]$ as follows:

$$
\gamma(t)=\left\{\begin{array}{lll}
t & \text { if } & -2 \leq t \leq-1 \\
e^{i \frac{\pi}{2}(1-t)} & \text { if } & -1 \leq t \leq 1 \\
t & \text { if } & 1 \leq t \leq 2
\end{array}\right.
$$

The choice of the interval $[-2,2]$ as the domain of definition was just for convenience. Other closed intervals can be used to parametrize γ.

Fig. 3.10 The path of Example 3.1.12.

Example 3.1.13. (Polygonal paths) A polygonal path, $\boldsymbol{\gamma}=\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ is the union of the line segments $\left[z_{1}, z_{2}\right],\left[z_{2}, z_{3}\right], \ldots,\left[z_{n-1}, z_{n}\right]$. This is a piecewise linear path with initial point z_{1} and terminal point z_{n} and may have self intersections.

A polygonal path is called simple if it does not have self intersections, except possibly at the endpoints, that is, z_{1} and z_{n} may coincide. The polygonal path is called closed if $z_{1}=z_{n}$. As an illustration, let $z_{1}=0, z_{2}=1+i$, and $z_{3}=-1+i$; then $\gamma=\left[z_{1}, z_{2}, z_{3}, z_{1}\right]$ is a simple closed polygonal path. To find the equation of γ, we start by finding the equations of the paths γ_{1}, γ_{2}, and γ_{3}, shown in Figure 3.11. From Example 3.1.2(d), we have

Fig. 3.11 The closed polygonal path $\left[z_{1}, z_{2}, z_{3}, z_{1}\right]$

