Not all properties of the derivative of a real-valued function hold for complexvalued functions. Most notably, the mean value property fails for complex-valued functions. For real-variable functions, the mean value property states that if f is continuous on $[a, b]$ and differentiable on (a, b), then $f(b)-f(a)=f^{\prime}(c)(b-a)$ for some c in (a, b).

This property does not hold for complex-valued functions. To see this, consider $f(x)=e^{i x}$ for x in $[0,2 \pi]$. Then f is continuous on $[0,2 \pi]$ and has a derivative $f^{\prime}(x)=i e^{i x}$ on $(0,2 \pi)$. Also,

$$
f(2 \pi)-f(0)=1-1=0
$$

but f^{\prime} never vanishes since

$$
\left|f^{\prime}(x)\right|=\left|i e^{i x}\right|=\left|e^{i x}\right|=1
$$

~~~
\(\xrightarrow{f(0)=1, ~} \quad f^{\prime}(x) \neq 0 \xrightarrow{f(2 \pi)=1}\)


Hence there is no number \(c\) in \((0,2 \pi)\) such that \(f(2 \pi)-f(0)=(2 \pi-0) f^{\prime}(c)\), and so the mean value property does not hold for complex-valued functions (Figure 3.9).

Fig. 3.9 The mean value property fails for complex-valued functions of a real variable.

\section*{Paths (Contours)}

We introduce the notion of a path, which is fundamental in the theory of complex integration. Recall that a curve already contains intrinsically the notion of continuity. We now attach to it the fundamental analytical property of differentiability.

A continuous map \(f\) from \([a, b]\) to \(\mathbb{C}\) is called continuously differentiable if it is also differentiable on \([a, b]\) and its derivative \(f^{\prime}\) is continuous on \([a, b]\). The derivative \(f^{\prime}\) is defined at \(a\) and \(b\) as the one-sided limits \(f^{\prime}(a)=\lim _{t \downarrow a} \frac{f(t)-f(a)}{t-a}\) and \(f^{\prime}(b)=\lim _{t \uparrow b} \frac{f(t)-f(b)}{t-b}\). We extend this notion by allowing \(\gamma\) to have one-sided derivatives at finitely many points in \((a, b)\).

Definition 3.1.9. A continuous complex-valued function \(f(t)\) defined on a closed interval \([a, b]\) is called piecewise continuously differentiable if there exist points \(a_{1}<a_{2}<\cdots<a_{m-1}\) in \((a, b)\) such that \(f^{\prime}\) is continuously differentiable on each interval \(\left[a_{j}, a_{j+1}\right]\) for \(j=0,1, \ldots, m-1\), where \(a_{0}=a\) and \(a_{m}=b\). In other words: (i) \(f^{\prime}(t)\) exists for all \(t\) in \(\left(a_{j}, a_{j+1}\right)\) and at the endpoints \(a_{j}, a_{j+1}\) as one-sided limit.
(ii) \(f^{\prime}\) is continuous on each interval \(\left[a_{j-1}, a_{j}\right]\) for \(j=1, \ldots, m\).

Note that \(f^{\prime}:[a, b] \rightarrow \mathbb{C}\) may be discontinuous at some \(a_{j}\).~~~

