Proof. We only consider the case $\operatorname{Re} f = \operatorname{Re} g$ on Ω since the case $\operatorname{Im} f = \operatorname{Im} g$ is almost identical and is left to Exercise 32. Let h = f - g = u + iv, with u, v real-valued. We want to show that h = c on Ω . Since h is analytic, it is enough by Theorem 2.5.7 to show that h' = 0 on Ω . We have $u = \operatorname{Re} h = \operatorname{Re} f - \operatorname{Re} g = 0$ on Ω , and so $u_x = u_y = 0$ on Ω . By the Cauchy-Riemann equations, $v_x = -u_y = 0$. Consequently, by (2.5.8), $h' = u_x + iv_x = 0$ on Ω .

Exercises 2.5

In Exercises 1–14, use Corollary 2.5.2 to determine the set on which the functions are analytic and compute their complex derivatives using either equation in (2.5.8).

1.	Z	2. z^2	3. e^{z^2}
	2x+3iy	5. $e^{\overline{z}}$	$6. \frac{y-ix}{x^2+y^2}$
7. 10.	$\frac{1}{z+1} \cos z$	8. $z^3 - 2z$ 11. $\sin(2z)$	9. ze^{z} 12. $\cosh z$
13.	$ z ^{2}$	14. $\frac{x^4 + i2xy(x^2 + y^2) - y^4 + x - iy}{x^2 + y^2}$	

In Exercises 15–26, use properties of the derivative to compute the complex derivatives of the functions and determine the largest set on which they are analytic. In Exercises 23 - 26, use the principal branch of the power.

15.	ze^{z^2}		$(1+e^z)^5$	17.	$\sin z \cos z$
18.	Log(z+1)	19.	$\frac{\text{Log}(3z-1)}{z^2+1}$	20.	$\sinh(3z+i)$
21.	$\cosh(z^2+3i)$		$\log_{\frac{\pi}{2}}(z+1)$	23.	z^i
24.	$(z+1)^{1/2}$	25.	$\frac{1}{(z-i)^{1/2}}$	26.	z^{z}

Solve Exercises 27 and 28 by identifying the limit as a complex derivative; Solve Exercises 29 and 30 using L'Hospital's rule (Exercise 24, Section 2.3).

27.
$$\lim_{z \to 0} \frac{\sin z}{z}$$
28.
$$\lim_{z \to 0} \frac{e^{z} - 1}{z}$$
29.
$$\lim_{z \to 0} \frac{\log(z+1)}{z}$$
30.
$$\lim_{z \to i} \frac{1+iz}{z(z-i)}$$

31. Define the **principal branch** of the inverse tangent by taking the principal branch of the logarithm as in (1.8.12):

$$\tan^{-1} z = \frac{i}{2} \operatorname{Log} \left(\frac{1 - iz}{1 + iz} \right).$$

Compute the derivative of $\tan^{-1} z$.

32. Complete the proof of Corollary 2.5.8 by treating the case Im f = Im g on Ω .

33. Suppose that f = u + iv is analytic in a region Ω . Show that that if either Re f or Im f are constant on Ω , then f must be constant on Ω .

34. Suppose that f = u + iv is analytic in a region Ω . Show that (a) $f' = u_x - iu_y$ and $f' = v_y + iv_x$; (b) $|f'|^2 = u_x^2 + u_y^2 = v_x^2 + v_y^2$.

35. Suppose that f and \overline{f} are analytic in a region Ω . Show that f must be constant in Ω . [Hint: Consider $f + \overline{f}$ and use Exercise 33.]