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Note that
ler(ey) < le(y)l, el y)] < le(xy)

and since €(x,y) tends to zero as (x,y) — (xo,y0), both & (x,y) and &(x,y) tend to
zero as (x,y) — (x0,y0). Hence both u and v are differentiable at (x,yo). Conse-
quently, the partial derivatives of # and v exist (Theorem 2.4.3) and we have

ux(xo,y0) =A uy(x0,y0) = —B
Vx(x()ay()) =B Vy(X(),y()) =A.
The Cauchy-Riemann equations (2.5.7) follow from this.

To prove the converse direction we assume that « and v are differentiable on U
and satisfy (2.5.7). By the definition of differentiability (Definition 2.4.1) we write

u(x,y) — u(xo,y0) = tx(x0,y0) (x — x0) + tty(x0,¥0) (y — yo) + €1 (x, )| (x — x0,y — y0)
v(x,y) = v(x0,Y0) = va(x0,Y0) (X — X0) + vy (x0,¥0) (y — ¥0) + €2(x, )| (x — X0,y — yo)|

where the € (x,y), &(x,y) are functions that tend to zero as (x,y) — (xo,y0). Adding
the displayed expressions (after multiplying the second one by i), we obtain

flx+iy) — f(x0+iyo)
= (ux(x0,0) + ivx(x0,0)) (x — x0) + (uy(x0,0) + ivy(x0,¥0)) (y — ¥0)
+€1(x,9)[(x —x0,y —yo) | +i&(x,y)|(x —x0,y — yo)]
= (ux(x0,0) + ivx(x0,0)) (x —x0) + (—vx(x0,¥0) + itx(x0,30)) (v — yo)
+ &1 (x,y)[(x — x0,y — yo) | +i&x(x,y)|(x —x0,y — yo)|

= (ux(x0,0) + ive(x0,50)) (x — X0 +i(y —y0)) + E(x+iy) (x —x0 +i(y —y0))
where in the second equality we used assumption (2.5.7) and we set

=20,y =y0)|
x—xo+i(y—yo)

e —x0,y =y0)|

E(x+iy) = & (x,y) x—xo+i(y—yo)

+ie(x,y)
Notice that
[E(x+iy)| < lei(xy)]+|&2(xy)],
which tends to 0 as (x,y) — (xo0,y0). We have now shown that
f(z) = f(z0) = (ux(z0) +ivx(20))(z —20) + E(2)(z—20)

which implies that f is analytic and that f’(z9) = u.(z0) + ivx(z0). This proves one
identity in (2.5.8), while the other one is a consequence of this one and (2.5.7). H

Corollary 2.5.2. If u,v are real-valued functions defined on an open subset U of R?
which have continuous partial derivatives that satisfy ux = vy, uy = —vy, then the
complex-valued function f(x+iy) = u(x,y) +iv(x,y) is analytic on U.

Proof. Apply Theorems 2.4.4 and 2.5.1. |



