Note that

$$
\left|\varepsilon_{1}(x, y)\right| \leq|\varepsilon(x, y)|, \quad\left|\varepsilon_{2}(x, y)\right| \leq|\varepsilon(x, y)|
$$

and since $\varepsilon(x, y)$ tends to zero as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$, both $\varepsilon_{1}(x, y)$ and $\varepsilon_{2}(x, y)$ tend to zero as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$. Hence both u and v are differentiable at $\left(x_{0}, y_{0}\right)$. Consequently, the partial derivatives of u and v exist (Theorem 2.4.3) and we have

$$
\begin{array}{ll}
u_{x}\left(x_{0}, y_{0}\right)=A & u_{y}\left(x_{0}, y_{0}\right)=-B \\
v_{x}\left(x_{0}, y_{0}\right)=B & v_{y}\left(x_{0}, y_{0}\right)=A
\end{array}
$$

The Cauchy-Riemann equations (2.5.7) follow from this.
To prove the converse direction we assume that u and v are differentiable on U and satisfy (2.5.7). By the definition of differentiability (Definition 2.4.1) we write

$$
\begin{aligned}
u(x, y)-u\left(x_{0}, y_{0}\right) & =u_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+u_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\varepsilon_{1}(x, y)\left|\left(x-x_{0}, y-y_{0}\right)\right| \\
v(x, y)-v\left(x_{0}, y_{0}\right) & =v_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+v_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\varepsilon_{2}(x, y)\left|\left(x-x_{0}, y-y_{0}\right)\right|
\end{aligned}
$$

where the $\varepsilon_{1}(x, y), \varepsilon_{2}(x, y)$ are functions that tend to zero as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$. Adding the displayed expressions (after multiplying the second one by i), we obtain

$$
\begin{aligned}
& f(x+i y)-f\left(x_{0}+i y_{0}\right) \\
& \quad=\left(u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(u_{y}\left(x_{0}, y_{0}\right)+i v_{y}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right) \\
& \quad+\varepsilon_{1}(x, y)\left|\left(x-x_{0}, y-y_{0}\right)\right|+i \varepsilon_{2}(x, y)\left|\left(x-x_{0}, y-y_{0}\right)\right| \\
& =\left(u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(-v_{x}\left(x_{0}, y_{0}\right)+i u_{x}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right) \\
& \quad \quad+\varepsilon_{1}(x, y)\left|\left(x-x_{0}, y-y_{0}\right)\right|+i \varepsilon_{2}(x, y)\left|\left(x-x_{0}, y-y_{0}\right)\right| \\
& \quad=\left(u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}+i\left(y-y_{0}\right)\right)+E(x+i y)\left(x-x_{0}+i\left(y-y_{0}\right)\right)
\end{aligned}
$$

where in the second equality we used assumption (2.5.7) and we set

$$
E(x+i y)=\varepsilon_{1}(x, y) \frac{\left|\left(x-x_{0}, y-y_{0}\right)\right|}{x-x_{0}+i\left(y-y_{0}\right)}+i \varepsilon_{2}(x, y) \frac{\left|\left(x-x_{0}, y-y_{0}\right)\right|}{x-x_{0}+i\left(y-y_{0}\right)}
$$

Notice that

$$
|E(x+i y)| \leq\left|\varepsilon_{1}(x, y)\right|+\left|\varepsilon_{2}(x, y)\right|,
$$

which tends to 0 as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$. We have now shown that

$$
f(z)-f\left(z_{0}\right)=\left(u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)\right)\left(z-z_{0}\right)+E(z)\left(z-z_{0}\right)
$$

which implies that f is analytic and that $f^{\prime}\left(z_{0}\right)=u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)$. This proves one identity in (2.5.8), while the other one is a consequence of this one and (2.5.7).

Corollary 2.5.2. If u, v are real-valued functions defined on an open subset U of \mathbb{R}^{2} which have continuous partial derivatives that satisfy $u_{x}=v_{y}, u_{y}=-v_{x}$, then the complex-valued function $f(x+i y)=u(x, y)+i v(x, y)$ is analytic on U.

Proof. Apply Theorems 2.4.4 and 2.5.1.

